Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Curr Res Food Sci ; 7: 100633, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38034945

RESUMO

The interrelated effect of different slaughtering, drying and defatting methods of black soldier fly larvae (BSFL) on the lipid composition and properties of the fat was studied. Blanching and freezing were compared as slaughtering methods, oven or freeze-drying as drying methods, and mechanical pressing or supercritical fluid extraction (SFE) as defatting methods. The different modes of slaughtering, drying, and defatting, along with both binary and ternary interactions caused significant effects on processes yields, lipid composition, moisture content and thermal properties. Thus, considering the defatting degree and the yield in total valued products (defatted meal plus fat), the combination of blanching, freeze-drying plus mechanical pressing was the worst option (51.2% and 87.5%, respectively). In contrast, the other combinations demonstrated better and comparable efficiency, although SFE is preferable for defatting (83.2% and 96.9%, respectively). The content of major fatty acids (lauric, palmitic and myristic acids) was significantly affected by the BSFL treatments, although with unsignificant impact on the total saturated fatty acids content. To preserve the integrity of the fat, the combination of blanching and oven-drying was preferred, as non-thermal methods of slaughtering and drying caused intense lipolysis, releasing free fatty acids (FFA) in the range of 18.6-23.5%. To achieve the lowest moisture content in the fats (≤0.1%), oven-drying with mechanical pressing were desired, regardless of the slaughtering method; while values > 1% were reached for freezing, freeze-drying and SFE. Both differences in FFA and moisture contents caused different thermal behaviors in the samples. Specially, the melting temperature was lower for samples with higher FFA and moisture contents, with a notable difference when freezing, freeze-drying and SFE were combined (14.5 °C vs 30.6 °C, as the mean value for the rest of samples). The different modes of processing did not affect the minor lipid compounds. Therefore, the modes employed for slaughtering, drying, and defatting of BSFL determine, either individually or in combination, the process yields, composition, and properties of the fat.

2.
Molecules ; 28(12)2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37375230

RESUMO

High-pressure homogenization (HPH) is an emerging technology for obtaining physical and microbial stability of plant-based milks, but there is little information on the effects of this technology on the phytochemical components of the processed plant food beverage and during its cold storage. The effect of three selected HPH treatments (180 MPa/25 °C, 150 MPa/55 °C, and 50 MPa/75 °C) and pasteurization (PAS) (63 °C, 20 min) on minor lipid constituents, total proteins, phenolic compounds, antioxidant capacity, and essential minerals of Brazil nut beverage (BNB) were studied. Additionally, the study of the possible changes in these constituents was carried out during cold storage at 5 °C for 21 days. The fatty acid profile (dominated by oleic acid and linoleic acid), free fatty acid content, protein, and essential minerals (notable source of Se and Cu) of the processed BNB remained almost stable to treatments (HPH and PAS). Specifically, reductions in squalene (22.7 to 26.4%) and γ-γ-tocopherol (28.4 to 36%) were observed in beverages processed via both non-thermal HPH and thermal PAS, but ß-sitosterol remained unchanged. Total phenolics were reduced (24 to 30%) after both treatments, a factor that influenced the observed antioxidant capacity. The studied individual phenolics in BNB were gallic acid, catechin, epicatechin, catechin gallate, and ellagic acid, being the most abundant compounds. During cold storage (5 °C) up to 21 days, changes in the content of phytochemicals, minerals, and total proteins were not noticeable for any treated beverages, and no lipolysis processes were promoted. Therefore, after the application of HPH processing, Brazil nut beverage (BNB) maintained almost unaltered levels of bioactive compounds, essential minerals, total protein, and oxidative stability, remarkable characteristics for its potential development as a functional food.


Assuntos
Antioxidantes , Bertholletia , Antioxidantes/análise , Bebidas/análise , Pasteurização , Minerais , Fenóis
3.
Nat Commun ; 14(1): 2779, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37188705

RESUMO

Reversible and sub-lethal stresses to the mitochondria elicit a program of compensatory responses that ultimately improve mitochondrial function, a conserved anti-aging mechanism termed mitohormesis. Here, we show that harmol, a member of the beta-carbolines family with anti-depressant properties, improves mitochondrial function and metabolic parameters, and extends healthspan. Treatment with harmol induces a transient mitochondrial depolarization, a strong mitophagy response, and the AMPK compensatory pathway both in cultured C2C12 myotubes and in male mouse liver, brown adipose tissue and muscle, even though harmol crosses poorly the blood-brain barrier. Mechanistically, simultaneous modulation of the targets of harmol monoamine-oxidase B and GABA-A receptor reproduces harmol-induced mitochondrial improvements. Diet-induced pre-diabetic male mice improve their glucose tolerance, liver steatosis and insulin sensitivity after treatment with harmol. Harmol or a combination of monoamine oxidase B and GABA-A receptor modulators extend the lifespan of hermaphrodite Caenorhabditis elegans or female Drosophila melanogaster. Finally, two-year-old male and female mice treated with harmol exhibit delayed frailty onset with improved glycemia, exercise performance and strength. Our results reveal that peripheral targeting of monoamine oxidase B and GABA-A receptor, common antidepressant targets, extends healthspan through mitohormesis.


Assuntos
Envelhecimento , Antidepressivos , Harmina , Mitocôndrias , Mitofagia , Monoaminoxidase , Receptores de GABA-A , Harmina/análogos & derivados , Harmina/farmacologia , Antidepressivos/farmacologia , Mitocôndrias/efeitos dos fármacos , Mitofagia/efeitos dos fármacos , Fibras Musculares Esqueléticas/efeitos dos fármacos , Quinases Proteína-Quinases Ativadas por AMP/metabolismo , Músculo Esquelético/efeitos dos fármacos , Fígado/efeitos dos fármacos , Envelhecimento/efeitos dos fármacos , Resistência à Insulina , Intolerância à Glucose/metabolismo , Estado Pré-Diabético/metabolismo , Monoaminoxidase/metabolismo , Receptores de GABA-A/metabolismo , Longevidade/efeitos dos fármacos , Caenorhabditis elegans , Drosophila melanogaster , Fragilidade/prevenção & controle , Condicionamento Físico Animal , Modelos Animais , Masculino , Feminino , Animais , Camundongos , Fígado Gorduroso/metabolismo , Tecido Adiposo Marrom/efeitos dos fármacos
4.
Insects ; 14(4)2023 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-37103183

RESUMO

The interrelation effect of slaughtering, drying, and defatting methods of BSFL on the oxidative quality of the derived fat was studied. Blanching and freezing were compared as slaughtering methods, followed by oven or freeze-drying for drying and mechanical pressing or SFE for defatting. The oxidative state and stability of the extracted fat and defatted meals were monitored immediately after their production, using peroxide value (PV) and Rancimat test, and over 24 weeks of storage. Slaughtering and drying methods had an independent effect on PV, with freezing and freeze-drying being the best methods. Mechanical pressing and SFE were comparable and superior to conventional hexane defatting. Interactions were observed between slaughtering and defatting, drying and defatting, and between all three factors. Generally, freeze-drying combined with any of the slaughtering and defatting methods resulted in the lowest PVs, with mechanical pressing being preferred. Freeze-drying plus mechanical pressing also produced the most stable fats during storage according to the evolution of PV, while the combination of blanching and SFE produced the least stable. A significant correlation was found between the PV at 24 weeks and the antioxidant activity of the fats. Contrary to storage assays, in accelerated Rancimat assays, freeze-dried samples were the least stable, which was partially attributed to the significant correlation with the acid values of the samples. Defatted meals followed a similar pattern to the extracted fat, except for worse oxidation for SFE defatting. Therefore, the different processing methods of slaughtering, drying, and defatting of BSFL differently affect lipid oxidation, with interactions between such successive steps.

5.
Int J Mol Sci ; 24(8)2023 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-37108121

RESUMO

Synsepalum dulcificum (Richardella dulcifica) is a berry fruit from West Africa with the ability to convert the sour taste into a sweet taste, and for this reason, the fruit is also known as the "miracle berry" (MB). The red and bright berry is rich in terpenoids. The fruit's pulp and skin contain mainly phenolic compounds and flavonoids, which correlate with their antioxidant activity. Different polar extracts have been described to inhibit cell proliferation and transformation of cancer cell lines in vitro. In addition, MB has been shown to ameliorate insulin resistance in a preclinical model of diabetes induced by a chow diet enriched in fructose. Herein, we have compared the biological activities of three supercritical extracts obtained from the seed-a subproduct of the fruit-and one supercritical extract obtained from the pulp and the skin of MB. The four extracts have been characterized in terms of total polyphenols content. Moreover, the antioxidant, anti-inflammatory, hypo-lipidemic, and inhibition of colorectal cancer cell bioenergetics have been compared. Non-polar supercritical extracts from the seed are the ones with the highest effects on the inhibition of bioenergetic of colorectal (CRC) cancer cells. At the molecular level, the effects on cell bioenergetics seems to be related to the inhibition of main drivers of the de novo lipogenesis, such as the sterol regulatory element binding transcription factor (SREBF1) and downstream molecular targets fatty acid synthase (FASN) and stearoyl coenzyme desaturase 1 (SCD1). As metabolic reprograming is considered as one of the hallmarks of cancer, natural extracts from plants may provide complementary approaches in the treatment of cancer. Herein, for the first time, supercritical extracts from MB have been obtained, where the seed, a by-product of the fruit, seems to be rich in antitumor bioactive compounds. Based on these results, supercritical extracts from the seed merit further research to be proposed as co-adjuvants in the treatment of cancer.


Assuntos
Frutas , Extratos Vegetais , Humanos , Frutas/química , Extratos Vegetais/química , Antioxidantes/química , Sementes/química , Doença Crônica
6.
Foods ; 12(6)2023 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-36981113

RESUMO

Borututu (Cochlospermum angolense Welw.) roots have been described as a rich source of phenolic compounds. Despite the potential of this plant for the production of bioactive extracts, studies reported until now have been scarce, and they have been based on the use of inefficient conventional extraction techniques. In this study, pressurized liquid extraction (PLE) was investigated for the production of borututu root extracts. Different temperatures (50-200 °C) and solvents (water, ethanol, and 50% ethanol:water) were applied. The total phenolic compound (TPC) content, the main phenolic compounds and the in vitro antioxidant activity of the extracts were evaluated. The results were compared with those obtained by conventional decoction with water. The highest concentrations of TPC and antioxidant activity were obtained with 50% ethanol:water, followed by water. The extract obtained with 50% ethanol:water at 150 °C had a TPC concentration of 343.80 mg/g and presented the largest antioxidant activity (1488 and 4979 µmol Trolox/g extract, determined by DDPH and ABTS assay, respectively). These values were considerably higher than those obtained by conventional decoction. Ellagic acid, and ellagic and methyl ellagic acid glycosides were the main phenolic compounds found in the extracts. Therefore, was PLE demonstrated to be a selective and efficient technique to obtain extracts with high concentrations of phenolic compounds and high antioxidant activity form borututu roots.

7.
Foods ; 12(3)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36766019

RESUMO

The supercritical defatting of H. illucens was scaled up at 450 bar and 60 °C from a 270 cm3 extraction cell to a vessel five times larger. Then, eight different H. illucens larvae batches, with variable content of oil (16.80-29.17% w/w) and moisture (4.45-15.95% w/w) were defatted. The effect of these parameters on yield and oil composition was analyzed. The presence of moisture in the larvae batch, in the range of the values studied, had no negative effect on the oil recovery efficiency, which was mainly determined by the initial content of oil in the larvae samples. Furthermore, no differences were determined in the fatty acid profile of the oils recovered, which were rich in saturated fatty acids, mainly lauric acid (ca. 50% w/w). Minor lipids, such as squalene and phytosterols, were determined in all the oil samples. The moisture content in the oils extracted was in the range of 0.118-1.706% w/w. Therefore, some samples exceeded the limits recommended for volatile matter in edible fats and oils (0.2%, including moisture). Yet, concerning the oil peroxide index, values were much lower than those corresponding to the oil extracted using hexane.

8.
Insects ; 13(10)2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36292844

RESUMO

The mealworm (Tenebrio molitor Linnaeus 1758) is gaining importance as one of the most popular edible insects. Studies focusing on its bioactivities are increasing, although alternative forms of consumption other than the whole insect or flour, such as bioactive non-protein extracts, remain underexplored. Furthermore, the incidence of metabolic syndrome-related pathologies keeps increasing, hence the importance of seeking novel natural sources for reducing the impact of certain risk factors. The aim was to study the potential of a non-protein mealworm extract on metabolic syndrome-related pathologies, obtained with ethanol:water (1:1, v/v) by ultrasound-assisted extraction. We characterized the extract by gas-chromatography mass-spectrometry and assessed its hypolipidemic potential, its ability to scavenger free radicals, to attenuate the inflammatory response in microglial cells, to affect mitochondrial respiration and to enhance insulin sensitivity in mouse hepatocytes. The extract contained fatty acids, monoglycerides, amino acids, certain acids and sugars. The mealworm extract caused a 30% pancreatic lipase inhibition, 80% DPPH· scavenging activity and 55.9% reduction in the bioaccessibility of cholesterol (p = 0.009). The extract was effective in decreasing iNOS levels, increasing basal, maximal and ATP coupled respiration as well as enhancing insulin-mediated AKT phosphorylation at low insulin concentrations (p < 0.05). The potential of a non-protein bioactive mealworm extract against metabolic syndrome-related pathologies is shown, although further studies are needed to elucidate the mechanisms and relationship with compounds.

9.
Food Funct ; 13(10): 5640-5653, 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35506542

RESUMO

Nowadays, there is great interest in the discovery of food compounds that might inhibit gut microbial TMA production from its methylamine precursors. In this work, an innovative novel screening strategy capable of rapidly determining the differences in the metabolic response of Klebsiella pneumoniae, a bacteria producing TMA under aerobic conditions, to a library of extracts obtained from food and natural sources was developed. The proposed high-throughput screening (HTS) method combines resazurin reduction assay in 384-well plates and Gaussian Processes as a machine learning tool for data processing, allowing for a fast, cheap and highly standardized evaluation of any interfering effect of a given compound or extract on the microbial metabolism sustained by L-carnitine utilization. As a proof-of-concept of this strategy, a pilot screening of 39 extracts and 6 pure compounds was performed to search for potential candidates that could inhibit in vitro TMA formation from L-carnitine. Among all the extracts tested, three of them were selected as candidates to interfere with TMA formation. Subsequent in vitro assays confirmed the potential of oregano and red thyme hexane extracts (at 1 mg mL-1) to inhibit TMA formation in bacterial lysates. In such in vitro assay, the red thyme extract exerted comparable effects on TMA reduction (∼40%) as 7.5 mM meldonium (∼50% TMA decrease), a reported L-carnitine analogue. Our results show that metabolic activity could be used as a proxy of the capacity to produce TMA under controlled culture conditions using L-carnitine to sustain metabolism.


Assuntos
Doenças Cardiovasculares , Microbioma Gastrointestinal , Carnitina/metabolismo , Microbioma Gastrointestinal/fisiologia , Ensaios de Triagem em Larga Escala , Humanos , Metilaminas/metabolismo , Oxazinas , Compostos Fitoquímicos , Xantenos
10.
Foods ; 10(12)2021 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-34945560

RESUMO

The consumption of plant-based beverages is a growing trend and, consequently, the search for alternative plant sources, the improvement of beverage quality and the use of their by-products, acquire great interest. Thus, the purpose of this work was to characterize the composition (nutrients, phytochemicals and antioxidant activity) of the Brazil nut (BN), its whole beverage (WBM), water-soluble beverage (BM-S), and its by-products of the beverage production: cake, sediment fraction (BM-D), and fat fraction (BM-F). In this study, advanced methodologies for the analysis of the components were employed to assess HPLC-ESI-QTOF (phenolic compounds), GC (fatty acids), and MALDI-TOF/TOF (proteins and peptides). The production of WBM was based on a hot water extraction process, and the production of BM-S includes an additional centrifugation step. The BN showed an interesting nutritional quality and outstanding content of unsaturated fatty acids. The investigation found the following in the composition of the BN: phenolic compounds (mainly flavan-3-ols as Catechin (and glycosides or derivatives), Epicatechin (and glycosides or derivatives), Quercetin and Myricetin-3-O-rhamnoside, hydroxybenzoic acids as Gallic acid (and derivatives), 4-hydroxybenzoic acid, ellagic acid, Vanillic acid, p-Coumaric acid and Ferulic acid, bioactive minor lipid components (ß-Sitosterol, γ-Tocopherol, α-Tocopherol and squalene), and a high level of selenium. In beverages, WBM had a higher lipid content than BM-S, a factor that influenced the energy characteristics and the content of bioactive minor lipid components. The level of phenolic compounds and selenium were outstanding in both beverages. Hydrothermal processing can promote some lipolysis, with an increase in free fatty acids and monoglycerides content. In by-products, the BM-F stood out due to its bioactive minor lipid components, the BM-D showed a highlight in protein and mineral contents, and the cake retained important nutrients and phytochemicals from the BN. In general, the BN and its beverages are healthy foods, and its by-products could be used to obtain healthy ingredients with appreciable biological activities (such as antioxidant activity).

11.
Foods ; 10(9)2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34574177

RESUMO

Melissa officinalis L. and Origanum majorana L., within Lamiaceae family, and Calendula officinalis L. and Achillea millefolium L., within the Asteraceae, have been considered a good source of bioactive ingredients with health benefits. In this study, the supercritical fluid extraction (SFE) using pure CO2, and the ultrasound assisted extraction (UAE) were proposed as green techniques to obtain plant-based extracts with potential antioxidant and anti-inflammatory activities. Higher values of total phenolic content and antioxidant activity were achieved in UAE ethanol:water (50:50, v/v) extracts. Meanwhile, UAE pure ethanol extracts showed greater anti-inflammatory activity. RP-HPLC-PAD-ESI-QTOF-MS/MS analysis showed a vast number of phenolic compounds in the extracts, including unreported ones. O. majorana ethanol:water extract presented the highest content of phenolics and antioxidant activity; among its composition, both rosmarinic acid and luteolin glucoside derivatives were abundant. The pure ethanol extract of A. millefolium resulted in an important content of caffeoylquinic acid derivatives, luteolin-7-O-glucoside and flavonoid aglycones, which could be related to the remarkable inhibition of TNF-α, IL-1ß and IL-6 cytokines. Besides, borneol and camphor, found in the volatile fraction of A. millefolium, could contributed to this latter activity. Thus, this study points out that O. majorana and A. millefolium are considered a promising source of bioactive ingredients with potential use in health promotion.

12.
Insects ; 12(9)2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34564229

RESUMO

The production of specific insect extracts with bioactive properties for human health is an emerging and innovative field for the edible insects industry, but there are unexplored extraction factors that might modulate the bioactivity of the extracts. Ultrasound-assisted extracts from T. molitor and H. illucens were produced. Effects of defatting pre-treatment and extraction solvent were evaluated on extraction yield, antioxidant activity and pancreatic lipase inhibitory effect. Chemical characterisation of defatted extracts from H. illucens was performed by GC-MS-FID. Non-defatted extracts showed higher extraction yields. Defatted extracts had similar extraction yields (around 3%). Defatted extracts had higher antioxidant activity, T. molitor being stronger than H. illucens. Antioxidant activity of T. molitor methanol extract was higher than the rest of solvents. Aqueous ethanol improved the antioxidant activity of H. illucens extracts. All extracts inhibited lipase, but no significant effect of defatting and solvent was observed for T. molitor. A significant higher inhibitory activity was observed for H. illucens, the strongest being defatted 100% and 70% ethanol H. illucens extracts. H. illucens extracts contained free amino acids and disaccharides, together with minor fractions of lipids, sterols and organic acids. These results evidence the potential of extracts obtained from edible insects as antioxidants and inhibitors of the pancreatic lipase, a simultaneous multibioactivity that might be favoured by the defatting pre-treatment of the samples and the solvent of extraction.

13.
Food Res Int ; 131: 109007, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32247499

RESUMO

Although triacylglycerols (TAG) are the major constituents of chia oil, it also contains minor lipid fractions that include phospholipids (PL) among other desirable components. Its amphiphilic character and excellent biocompatibility make PL appropriate for numerous applications with technological and nutritional significanceand potential health benefits. Given the difficulties entailed by the PL isolation, the efficiency for extracting such compounds using two environmental friendly techniques, pressurized liquid extraction (PLE) and supercritical fluid extraction (SFE) was evaluated. By using PLE with food-grade ethanol (EtOH), an oil recovery close to 100% was achieved in just 10 min. This oil extract was particularly rich in α-linolenic acid (ALA; 70%) as compared to the oil extracted by SFE (56%). In the case of SFE, the oil recovery was only 87% but increased to 99% when ethanol was added to CO2. However the use of co-solvent did not affect the fatty acid profile of the supercritical extracts or their TAG composition, where the high molecular weight TAG species were the predominant in all cases. With the exception of SFE without co-solvent, all methods applied were capable of extracting the PL fraction, although the content and distribution of the individual components present in this fraction differed markedly depending on the extraction conditions used. In this context, the use of a sequential extraction process, combining SFE and PLE was particularly interesting. The re-extraction by PLE of the chia cake, previously defatted by SFE, allowed to obtain an oil extract highly enriched in PLs, whose content exceeded 16% and with a higher PL species than the rest of the oil extracts.


Assuntos
Cromatografia com Fluido Supercrítico/métodos , Extratos Vegetais/química , Óleos de Plantas/química , Salvia/química , Sementes/química , Produtos Biológicos , Canfanos , Fracionamento Químico/métodos , Medicamentos de Ervas Chinesas/química , Etanol , Ácidos Graxos/química , Panax notoginseng , Fosfolipídeos , Pressão , Salvia miltiorrhiza , Solventes , Triglicerídeos
14.
PLoS One ; 14(3): e0214294, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30913248

RESUMO

Metabolic reprogramming is considered a hallmark of cancer. Currently, the altered lipid metabolism in cancer is a topic of interest due to the prominent role of lipids regulating the progression of various types of tumors. Lipids and lipid-derived molecules have been shown to activate growth regulatory pathways and to promote malignancy in pancreatic cancer. In a previous work, we have described the antitumoral properties of Yarrow (Achillea Millefolium) CO2 supercritical extract (Yarrow SFE) in pancreatic cancer. Herein, we aim to investigate the underlaying molecular mechanisms by which Yarrow SFE induces cytotoxicity in pancreatic cancer cells. Yarrow SFE downregulates SREBF1 and downstream molecular targets of this transcription factor, such as fatty acid synthase (FASN) and stearoyl-CoA desaturase (SCD). Importantly, we demonstrate the in vivo effect of Yarrow SFE diminishing the tumor growth in a xenograft mouse model of pancreatic cancer. Our data suggest that Yarrow SFE can be proposed as a complementary adjuvant or nutritional supplement in pancreatic cancer therapy.


Assuntos
Achillea/química , Antineoplásicos Fitogênicos/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Extratos Vegetais/química , Achillea/metabolismo , Animais , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/uso terapêutico , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Ácido Graxo Sintases/genética , Ácido Graxo Sintases/metabolismo , Humanos , Masculino , Camundongos , Camundongos Nus , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estearoil-CoA Dessaturase/genética , Estearoil-CoA Dessaturase/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/antagonistas & inibidores , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Transplante Heterólogo
15.
Food Res Int ; 115: 400-407, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30599958

RESUMO

Chia seeds constitute a promising source of α-linolenic acid (ALA). In the present work, an underutilized and cheaper set of chia seeds, which were discarded after the harvest according to quality criteria - named in this work as low oil content seeds (LOCS) - have been evaluated as a potential source for obtaining PUFA-enriched oils against the commonly studied high-quality chia seeds denoted as high oil content seeds (HOCS) in this study. Two efficient and environmental friendly techniques, supercritical fluid extraction (SFE) and pressurized liquid extraction (PLE), were evaluated to optimize the extraction process of chia oil. At 60 °C, by using pressurized food-grade ethanol, recoveries close to 100% were achieved from both sets of seeds in a short extraction time (10 min). By using SFE, the greatest oil extraction yield (>95%) was attained at the highest pressure and temperature conditions (45 MPa and 60 °C) after 240 min. At the early stage of SFE extraction, both LOCS and HOCS exhibited a similar kinetic behavior, reaching oil extraction rates of 0.59 g oil/min and 0.64 g oil/min, respectively. No differences were found between the fatty acid profile of the oils extracted from LOCS and HOCS both by PLE and SFE. ALA and linoleic acid (LA) concentrations ranged between 65-68% and 17-23% respectively, and a predominance of high molecular weight triglycerides (≥ CN50), was found in all extracted oils. In conclusion, LOCS might constitute a new suitable raw material for the production of ALA-enriched oils. Concerning the extraction methods assayed, the oil was almost entirely recovered by both PLE and SFE at the used conditions.


Assuntos
Cromatografia com Fluido Supercrítico/métodos , Ácidos Graxos Ômega-3/química , Ácidos Graxos Ômega-3/isolamento & purificação , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Salvia/química , Sementes/química , Fracionamento Químico/métodos , Etanol , Ácidos Graxos/análise , Temperatura Alta , Pressão Hidrostática , Óleos de Plantas/química , Óleos de Plantas/isolamento & purificação , Triglicerídeos/análise , Ácido alfa-Linolênico
16.
J Sci Food Agric ; 99(6): 3157-3167, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30536393

RESUMO

BACKGROUND: Typical hydrolysis times of saponins generally do not take into consideration the effect of time on the degradation of the target compounds, namely sapogenins. When producing natural extracts, it should be borne in mind that conducting hydrolysis to yield a target compound might also affect the final composition of the extracts in terms of other bioactive compounds. In our study, saponin-rich extracts from fenugreek, quinoa, lentil, and soybean were produced and their acid hydrolysis to give sapogenin-rich extracts was conducted over different periods (0-6 h). The disappearance of saponins and appearance of sapogenins was analyzed using high-performance liquid chromatography-diode array detection-mass spectrometry (HPLC-DAD-MS) and gas chromatography-mass spectrometry (GC-MS), respectively. The impact of hydrolysis on the phytosterols and tocopherol in the extracts was also evaluated. RESULTS: Fenugreek showed the highest saponin content (169 g kg-1 ), followed by lentil (20 g kg-1 ), quinoa (15 g kg-1 ), and soybean (13 g kg-1 ). Hydrolysis for 1 h caused the complete disappearance of saponins and the greatest release of sapogenins. Hydrolyzed fenugreek and quinoa extracts contained the highest amounts of sapogenins and minor fractions of phytosterols and tocopherol. Hydrolyzed extracts of lentil and soybean contained a major fraction of phytosterols and a low fraction of sapogenins. In all cases, sapogenins decreased after 1 h of hydrolysis, phytosterols slightly decreased, and tocopherol was unaffected. Standards of diosgenin and oleanolic acid also showed this decreasing pattern under acid hydrolysis conditions. CONCLUSION: Hydrolysis times of 1 h for saponin-rich extracts from the assayed seeds guarantee the maximum transformation to sapogenin-rich extracts, along with phytosterols and tocopherol. Fenugreek and quinoa seeds are preferred for this. © 2018 Society of Chemical Industry.


Assuntos
Chenopodium quinoa/química , Glycine max/química , Lens (Planta)/química , Extratos Vegetais/química , Sapogeninas/química , Saponinas/química , Trigonella/química , Ácidos/química , Cromatografia Líquida de Alta Pressão , Cromatografia Gasosa-Espectrometria de Massas , Hidrólise , Fitosteróis/química
17.
Food Chem ; 270: 509-517, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30174080

RESUMO

Ethanol extracts (EE) from fenugreek and quinoa seeds with different total content of inhibitory compounds (TIC, total saponin plus phenolic) were prepared with and without concentration of TIC (CEE -concentrated EE-, and EE, respectively). Their inhibitory activity on pancreatic lipase and α-amylase was assessed by traditional in vitro methods (with or without orbital shaking), and by simulating intestinal digestion. CEE contained higher contents of TIC than EE, being fenugreek superior to quinoa (p < 0.001). The extracts inhibited enzymes in a dose-dependent manner, CEE extracts being stronger (fenugreek for lipase -p = 0.009-, and quinoa for α-amylase -p < 0.001-). Shaking did not impact the activity. Intestinal conditions worsened the inhibition of lipase, but slightly catalyzed the α-amylase. Longer times of reaction worsened activities. The importance of assessing the inhibitory activity of extracts under simulated intestinal conditions is concluded, being fenugreek more interesting than quinoa, especially against pancreatic lipase.


Assuntos
Chenopodium quinoa/química , Lipase/antagonistas & inibidores , Extratos Vegetais/farmacologia , Trigonella/química , alfa-Amilases/antagonistas & inibidores , Lipase/química , Fenóis , alfa-Amilases/química
18.
Artigo em Inglês | MEDLINE | ID: mdl-32039173

RESUMO

The recent development of powerful "omics" technologies (genomics, transcriptomics, proteomics, metabolomics, and lipidomics) has opened new avenues in nutritional sciences toward precision nutrition, which is a genotype-directed nutrition that takes into account the differential responses to nutritional interventions based on gene variation (nutrigenetics) and the effect of nutrients on gene expression (nutrigenomics). Current evidence demonstrates that up to one third of the deaths caused by cancer could be prevented by acting on key risk factors, with diet being one of the most important risk factors due to its association with obesity. Additional factors such as composition of gut microbiome, the immune system, and the nutritional status will have an impact on the final outcome. Nutrient components and bioactive compounds from natural sources can have an impact on cancer progression or even the risk of cancer development by regulating gene expression and/or associated risk factors such as obesity and chronic inflammation. Nowadays, among the different methods to produce natural extracts, the green technology of supercritical fluid extraction (SFE) is quite popular, with a special interest on the use of supercritical CO2 for the extraction of compounds with low polarity. The success of nutritional interventions based on the use of nutraceuticals requires several steps: (i) in vitro and preclinical demonstration of their antitumoral effects; (ii) knowledge of their mechanism of action and molecular targets, which will allow for identification of the specific subgroups of patients who will benefit from them; (iii) the study of genetic variants associated with the differential responses; and (iv) innovative approaches of formulations to improve the in vivo bioavailability of the bioactive ingredients. Herein, we investigate the antitumoral properties and mechanism of action of a supercritical CO2 extract from Calendula officinalis, commonly known as marigold (marigold SFE) in the context of pancreatic cancer. Mechanistically, marigold SFE induces the expression of BMP8B, which leads to an energetic catastrophe ending up with autophagy-induced cell death (AICD). As metabolic reprogramming is a well-recognized hallmark of cancer, the direct impact of marigold SFE on pancreatic cancer cell metabolism encourages further research of its potential as a coadjuvant in pancreatic cancer therapy. Finally, we discuss innovative formulation approaches to augment the clinical therapeutic potential of marigold SFE in nutritional interventions.

19.
Nutrients ; 12(1)2019 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-31888081

RESUMO

Nowadays, obesity and its associated metabolic disorders, including diabetes, metabolic syndrome, cardiovascular disease, or cancer, continue to be a health epidemic in westernized societies, and there is an increased necessity to explore anti-obesity therapies including pharmaceutical and nutraceutical compounds. Considerable attention has been placed on the identification of bioactive compounds from natural sources to manage the metabolic stress associated with obesity. In a previous work, we have demonstrated that a CO2 supercritical fluid extract from yarrow (Yarrow SFE), downregulates the expression of the lipogenic master regulator SREBF1 and its downstream molecular targets FASN and SCD in a tumoral context. Since obesity and diabetes are strongly considered high-risk factors for cancer development, herein, we aimed to investigate the potential therapeutic role of Yarrow SFE in the metabolic stress induced after a high-fat diet in mice. For this purpose, 32 C57BL/6 mice were distributed in four groups according to their diets: standard diet (SD); SD supplemented with Yarrow SFE (SD + Yarrow); high-fat diet (HFD); and HFD supplemented with Yarrow SFE (HFD + Yarrow). Fasting glycemia, insulin levels, homeostasis model assessment for insulin resistance (HOMA-IR), lipid profile, gene expression, and lipid content of liver and adipose tissues were analyzed after three months of treatment. Results indicate improved fasting glucose levels in plasma, enhanced insulin sensitivity, and diminished hypercholesterolemia in the HFD + Yarrow group compared to the HFD group. Mechanistically, Yarrow SFE protects liver from steatosis after the HFD challenge by augmenting the adipose tissue buffering capacity of the circulating plasma glucose.


Assuntos
Achillea/química , Dieta Hiperlipídica/efeitos adversos , Obesidade/metabolismo , Extratos Vegetais/farmacologia , Estresse Fisiológico/efeitos dos fármacos , Animais , Glicemia/efeitos dos fármacos , Resistência à Insulina , Lipídeos/sangue , Fígado/efeitos dos fármacos , Fígado/patologia , Camundongos , Camundongos Endogâmicos C57BL
20.
BMC Complement Altern Med ; 18(1): 254, 2018 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-30223811

RESUMO

BACKGROUND: Pancreatic cancer is one of the most aggressive and mortal cancers. Although several drugs have been proposed for its treatment, it remains resistant and new alternatives are needed. In this context, plants and their derivatives constitute a relevant source of bioactive components which might efficiently inhibit tumor cell progression. METHODS: In this study, we have analyzed the potential anti-carcinogenic effect of different Asteraceae (Achillea millefolium and Calendula officinalis) and Lamiaceae (Melissa officinalis and Origanum majorana) plant extracts obtained by different green technologies (Supercritical CO2 Extraction -SFE- and Ultrasonic Assisted Extraction -UAE-) to identify efficient plant extracts against human pancreatic cancer cells that could constitute the basis of novel treatment approaches. RESULTS: Asteraceae extracts showed better results as antitumoral agents than Lamiaceae by inducing cytotoxicity and inhibiting cell transformation, and SFE extracts were most efficient than UAE extracts. In addition, SFE derived plant extracts from Achillea millefolium and Calendula officinalis displayed synergism with the chemotherapeutic 5-Fluororacil. CONCLUSION: These results show how Yarrow and Marigold SFE-derived extracts can inhibit pancreatic cancer cell growth, and could be proposed for a comprehensive study to determine the molecular mechanisms involved in their bioactivity with the final aim to propose them as potential adjuvants in pancreatic cancer therapy.


Assuntos
Antineoplásicos/farmacologia , Asteraceae/química , Lamiaceae/química , Neoplasias Pancreáticas/metabolismo , Extratos Vegetais/farmacologia , Antineoplásicos/química , Caspases/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Fluoruracila , Humanos , Extratos Vegetais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA