Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
J Dairy Res ; 91(1): 99-107, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38622952

RESUMO

The experiments reported in this research paper aimed to evaluate the physico-chemical and sensory characteristics, microbial quality and antioxidant potential of goat's milk paneer during storage (0-12 d, 4 ± 1°C). The juices from five different citrus fruits were used as coagulant (treatments) to make goat's milk paneer. The pH of all paneer samples decreased during storage whereas titratable acidity increased. Ash (%) fat (%) and protein (%) of paneer increased slightly during storage, whereas sensory perception decreased. The juices from all the citrus fruit varieties showed high contents of total phenolics and total flavonoids which ultimately influenced ferric reducing antioxidant power, total antioxidant capacity and radical scavenging activities. As the contents of different juices were also retained in the paneer matrix, so paneer coagulated with citrus juices also showed encouraging results in terms of total phenolic and flavonoid contents, ferric reducing antioxidant power and radical scavenging activities. Amongst all the paneers, the most promising was that coagulated by kinnow juice. In addition, the whey obtained from paneer coagulated by citrus juices also showed appreciable quantities of total phenolic and flavonoid contents, thereby beneficially influencing ferric reducing antioxidant power andradical scavenging activities. It is concluded that citrus juices improve the sensorial quality and antioxidant potential of goat's milk paneer and its whey.


Assuntos
Antioxidantes , Citrus , Flavonoides , Sucos de Frutas e Vegetais , Cabras , Leite , Fenóis , Soro do Leite , Animais , Citrus/química , Antioxidantes/análise , Sucos de Frutas e Vegetais/análise , Flavonoides/análise , Leite/química , Soro do Leite/química , Fenóis/análise , Armazenamento de Alimentos , Manipulação de Alimentos/métodos
2.
Molecules ; 26(22)2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34833855

RESUMO

Ultrasound-assisted extraction (UAE) was used to extract carotenoids from the carrot pomace. To investigate the effect of independent variables on the UAE, the response surface methodology (RSM) with central-composite design (CCD) was employed. The study was conducted with three independent variables including extraction time (min), temperature (°C), and ethanol concentration (%). The results showed that the optimal conditions for UAE were achieved with an extraction time of 17 min, temperature of 32 °C, and ethanol concentration of 51% of total carotenoids (31.82 ± 0.55); extraction time of 16 min, temperature of 29 °C, and ethanol concentration of 59% for a combination of ß-carotene (14.89 ± 0.40), lutein (5.77 ± 0.19), and lycopene (2.65 ± 0.12). The non-significant (p > 0.05) correlation under optimal extraction conditions between predicted and experimental values suggested that UAE is the more productive process than conventional techniques for the extraction of carotenoids from the carrot pomace.


Assuntos
Carotenoides/isolamento & purificação , Daucus carota/química , Sonicação , Carotenoides/química
3.
Skin Pharmacol Physiol ; 33(6): 331-341, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33401283

RESUMO

BACKGROUND: Capsaicin, the main pungent ingredient in hot chili peppers, causes excitation of small sensory neurons. It also provides the basic pungent flavor in Capsicum fruits. SUMMARY: Capsaicin plays a vital role as an agonist for the TRPV1 (transient receptor potential cation channel, subfamily V, member 1) receptor. TRPV1 is essential for the reduction of oxidative stress, pain sensations, and inflammation. Therefore, it has many pros related to health issue. Activation and positive impact of TRPV1 via capsaicin has been studied in various dermatological conditions and in other skin-related issues. Past studies documented that capsaicin plays a vital role in the prevention of atopic dermatitis as well as psoriasis. Moreover, TRPV1 is also very important for skin health because it acts as a capsaicin receptor. It is found in nociceptive nerve fibers and nonneural structures. It prompts the release of a compound that is involved in communicating pain between the spinal cord nerves and other parts of the body. Key Messages: Here, we summarize the growing evidence for the beneficial role of capsaicin and TRPV1 and how they help in the relief of skin diseases such as inflammation, permeation, dysfunction, atopic dermatitis, and psoriasis and in pain amplification syndrome.


Assuntos
Capsaicina/uso terapêutico , Capsicum/química , Inflamação/prevenção & controle , Pele/efeitos dos fármacos , Especiarias/análise , Animais , Humanos , Inflamação/metabolismo , Inflamação/patologia , Canais de Cátion TRPV/metabolismo
4.
Asian-Australas J Anim Sci ; 32(10): 1591-1602, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31011003

RESUMO

Objective: The present study was conducted to evaluate the antioxidant potential of paneer, a soft cheese supplemented with various water soluble date extracts during storage. Further, the whey obtained from all the paneer samples was also investigated for its antioxidant potential. Methods: The date cultivars were evaluated for their physico-chemical characteristics and date extracts were assessed for their antioxidant potential. Physico-chemical evaluation, microbiological quality and further antioxidant potential of the prepared paneer were carried out during storage period (0-8 days, 5°C). Results: All the date extracts were found to have considerable antioxidant activity due to presence of total phenolics and flavonoids. Owing to the presence of phenolics and flavoinds in date extracts, supplemented paneer showed higher trolox equivalent antioxidant capacity, reducing power and DPPH radical scavenging activity than control paneer. Paneer supplemented with Rabi extracts had the highest total phenolics (190.7 µg gallic acid equivalent/g paneer), DPPH radical scavenging activity (928.1 µmol equivalent of Trolx/g paneer) and trolox equivalent antioxidant capacity (9.2 µmol equivalent of Trolx/g paneer). The whey obtained from control paneer showed lower values of total phenolics, total flavonoids, DPPH, trolox equivalent antioxidant capacity and reducing power as compared to the values of whey obtained from paneer supplemented with date extracts. Conclusion: Paneer supplemented with date extracts and its whey may offer potent antioxidant activity.

5.
Pak J Pharm Sci ; 32(1): 205-212, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30772810

RESUMO

Synthetic drugs are associated with adverse side-effects and rapid increase in resistance to most of them inspires to evaluate plants for their therapeutic values. We have been aimed to suggest the medicinal use of Nigella sativa seed aqueous extract to minimize the severity of liver damage via its antioxidant properties and its role in maintenance of cell ion-homeostasis. Annoyances in serum levels of some antioxidants and trace metals in human hepatitis C infected patients were compared with that from acetaminophen-induced hepatotoxic rabbits. Serum analysis of human patients and that of hepatotoxic rabbits have exhibited the same trend of incidence of liver marker enzymes, antioxidant levels, and trace metal concentrations, except for the serum levels of cobalt. Significance of pre-/ or post-treatment of Nigella sativa to acetaminophen induced-hepatotoxic rabbit has also evaluated. NS post-treatment to rabbits has been found effective in normalizing the levels (P<0.001) of serum liver markers; especially the ALP levels, and the antioxidants; with significant effect on the serum catalase levels. However, NS pre-treatment has shown its role (P<0.001) in maintaining the serum nickel and cobalt concentrations. Therefore, we suggest the use of Nigella sativa seeds as pre-/ or post-treatment therapy, and also as supplement to the normal medications of liver infection to normalize the status of cell antioxidants and trace metal concentrations.


Assuntos
Antioxidantes/farmacologia , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Fígado/efeitos dos fármacos , Nigella sativa , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Acetaminofen , Adulto , Idoso , Animais , Antioxidantes/isolamento & purificação , Biomarcadores/sangue , Estudos de Casos e Controles , Doença Hepática Induzida por Substâncias e Drogas/sangue , Doença Hepática Induzida por Substâncias e Drogas/patologia , Citoproteção , Modelos Animais de Doenças , Feminino , Hepatite C Crônica/sangue , Hepatite C Crônica/diagnóstico , Hepatite C Crônica/virologia , Humanos , Fígado/metabolismo , Fígado/patologia , Masculino , Metais/sangue , Pessoa de Meia-Idade , Nigella sativa/química , Extratos Vegetais/isolamento & purificação , Coelhos , Sementes , Oligoelementos/sangue , Adulto Jovem
6.
Crit Rev Food Sci Nutr ; 55(11): 1514-28, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-24915309

RESUMO

Xylitol is a pentahydroxy sugar-alcohol which exists in a very low quantity in fruits and vegetables (plums, strawberries, cauliflower, and pumpkin). On commercial scale, xylitol can be produced by chemical and biotechnological processes. Chemical production is costly and extensive in purification steps. However, biotechnological method utilizes agricultural and forestry wastes which offer the possibilities of economic production of xylitol by reducing required energy. The precursor xylose is produced from agricultural biomass by chemical and enzymatic hydrolysis and can be converted to xylitol primarily by yeast strain. Hydrolysis under acidic condition is the more commonly used practice influenced by various process parameters. Various fermentation process inhibitors are produced during chemical hydrolysis that reduce xylitol production, a detoxification step is, therefore, necessary. Biotechnological xylitol production is an integral process of microbial species belonging to Candida genus which is influenced by various process parameters such as pH, temperature, time, nitrogen source, and yeast extract level. Xylitol has application and potential for food and pharmaceutical industries. It is a functional sweetener as it has prebiotic effects which can reduce blood glucose, triglyceride, and cholesterol level. This review describes recent research developments related to bioproduction of xylitol from agricultural wastes, application, health, and safety issues.


Assuntos
Biotecnologia/métodos , Inocuidade dos Alimentos , Tecnologia de Alimentos/métodos , Xilitol/biossíntese , Hidrólise , Xilitol/efeitos adversos , Xilitol/química , Xilose/metabolismo
7.
Crit Rev Food Sci Nutr ; 54(10): 1309-21, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24564588

RESUMO

Cheddar cheese is a biochemically dynamic product that undergoes significant changes during ripening. Freshly made curds of various cheese varieties have bland and largely similar flavors and aroma and, during ripening, flavoring compounds are produced that are characteristic of each variety. The biochemical changes occurring during ripening are grouped into primary events including glycolysis, lipolysis, and proteolysis followed by secondary biochemical changes such as metabolism of fatty acids and amino acids which are important for the production of secondary metabolites, including a number of compounds necessary for flavor development. A key feature of cheese manufacture is the metabolism of lactose to lactate by selected cultures of lactic acid bacteria. The rate and extent of acidification influence the initial texture of the curd by controlling the rate of demineralization. The degree of lipolysis in cheese depends on the variety of cheese and may vary from slight to extensive; however, proteolysis is the most complex of the primary events during cheese ripening, especially in Cheddar-type cheese.


Assuntos
Queijo/análise , Manipulação de Alimentos/métodos , Paladar , Aminoácidos/metabolismo , Ácido Cítrico/metabolismo , Ácidos Graxos/metabolismo , Glicólise , Ácido Láctico/metabolismo , Lipólise
8.
J Food Sci ; 89(2): 1243-1251, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38174813

RESUMO

This study aimed to evaluate the incorporation effect of probiotic culture (Lactobacillus acidophilus) in buffalo milk yogurt on stability and microbial survival rate during storage. In addition, the influence of probiotic culture on blood lipid profiles was investigated for a period of 6 weeks. Yogurt was prepared with buffalo milk with different probiotic concentrations (0, 100, and 50%) and administered to subjects at 300 g/day. All treatments showed a significant difference (p < 0.05) in acidity and pH during storage for 21 days at refrigeration temperature, while treatment with 100% probiotic culture (G2) was most prominent. Physicochemical analysis demonstrated a maximum pH decline of 0.60 in G2, followed by 0.56 in the mix cultured (G3). However, increasing trend was observed in acidity, with highest increment of 0.89% followed by 0.54% in G2 and G3, respectively. Storage study of total viable count demonstrated the reduction in the enumeration of microbial population owing to the production of organic acids, while L. acidophilus had a high survival rate of 5.25 log 10 CFU/g. Probiotic culture produced significant results in the lipid profile of subjects. Treatments containing probiotic bacteria G2 and G3 showed the lowest total cholesterol (183.57 and 182.85 mg/dL) and low density lipoproteins (LDL) (105.80 106.40 mg/dL), respectively. In terms of high density lipoproteins (HDL), G2 showed a highest increment of 49.82 mg/dL. Results of our study revealed that consumption of probiotic yogurt is beneficial for human health by improvement of blood lipid profiles and reduces cardiovascular patient's percentage around the globe. PRACTICAL APPLICATION: Experimental investigation of the effect of probiotic culture addition on the stability of buffalo milk yogurt. Assessment of the potential of Lactobacillus acidophilus on blood lipid profiles.


Assuntos
Probióticos , Iogurte , Animais , Humanos , Iogurte/análise , Búfalos , Colesterol/metabolismo , Lactobacillus acidophilus/metabolismo , Lipídeos
9.
Food Sci Nutr ; 11(9): 4948-4963, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37701240

RESUMO

Cheddar cheese-derived bioactive peptides are considered a potential component of functional foods. A positive impact of bioactive peptides on diet-related chronic, non-communicable diseases, like obesity, cardiovascular diseases, and diabetes, has been observed. Bioactive peptides possess multifunctional therapeutic potentials, including antimicrobial, immunomodulatory, antioxidant, enzyme inhibitory effects, anti-thrombotic, and phyto-pathological activities against various toxic compounds. Peptides can regulate human immune, gastrointestinal, hormonal, and neurological responses, which play an integral role in the deterrence and treatment of certain diseases like cancer, osteoporosis, hypertension, and other health disorders, as described in the present review. This review summarizes the categories of the Cheddar cheese-derived bioactive peptides, their general characteristics, physiological functions, and possible applications in healthcare.

10.
Food Sci Nutr ; 11(3): 1247-1256, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36911832

RESUMO

Olive (Olea europaea L.) has triacylglycerols, phenolics, and other antioxidants in its composition playing significant roles in maintaining health and reducing the onset of diseases. This study aimed to analyze the quality, antioxidant, textural profile, and sensory properties of processed Cheddar cheese fortified with 0%, 5%, 10%, 15%, and 20% (v/w) olive oil-whey protein isolate emulsion during 60 days of storage period. The results showed that processed cheese had significantly higher (p < .05) antioxidant activity, and total phenolic and flavonoids contents, whereas nonsignificant increase (p > .05) in moisture and acidity while decreasing tendencies in pH, fat, protein, and ash contents. Sensory analysis showed that processed Cheddar cheese with 5% emulsion had higher taste, aroma, texture/appearance, overall acceptability scores, and hardness. Conclusively, results indicated that olive oil-whey protein isolate emulsion could be beneficial for manufacturing and commercializing processed cheeses, analogs, or spreads with improved nutritional value and sensory characteristics.

11.
Food Sci Nutr ; 11(10): 6303-6311, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37823136

RESUMO

Camellia sinensis is rich in antioxidants such as polyphenols; Thymus vulgaris contains bioactive compounds (flavonoids, terpenoids, and tannins) and Zanthoxylum armatum is primarily composed of volatile oils, amides, alkaloids, flavonoids, lignan, and coumarin. The antibacterial, antifungal, biofilm inhibition, antioxidant, hemolytic, and thrombolytic activities of Camellia sinensis, Thymus vulgaris, and Zanthoxylum armatum ethanol and methanol extracts at different concentrations (30%, 50%, and 80%) were determined. The antioxidant activity and content were measured as free radical scavenging assay (DPPH), total flavonoid content (TFC), and total phenolic content (TPC). Furthermore, hemolytic and thrombolytic analysis was carried out to determine toxicity. In antimicrobial assays, 80% methanol thyme extract showed highest (15.31 mm) antibacterial activity against Bacillus subtilis, and 80% ethanol green tea extract showed optimal antibacterial activity against Staphylococcus aureus. Ethanol 30% green tea extract resulted in highest (26.61 mm) antifungal activity against Aspergillus niger. The maximum (54.73%) biofilm inhibition was resulted by methanol 50% thyme extract for Escherichia coli. In antioxidant activity and content, methanol 50% green tea extract had highest (80.82%) antioxidant activity, whereas, ethanol 80% green tea extract had maximum (1474.55 mg CE/g DW) TFC and methanol 80% green tea extract had maximum (593.05 mg GAE/g) TPC. In toxicological assays, methanol 30% green tea extract had highest (25.28%) thrombolytic activity, and ethanol 80% tejphal extract had maximum (18.24%) hemolytic activity. This study has highlighted the significant antimicrobial, antioxidant, hemolytic, and thrombolytic activities of Camellia sinensis, Thymus vulgaris, and Zanthoxylum armatum extracts that could be beneficial to treat various diseases (cancer, diabetes, and respiratory diseases) and may be utilized as functional ingredient in the preparation of functional foods and drinks.

12.
ScientificWorldJournal ; 2012: 518702, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22792044

RESUMO

This project was designed to produce a nourishing date bar with commercial value especially for school going children to meet their body development requirements. Protein level of date bars was optimized using response surface methodology (RSM). Economical and underutilized sources, that is, whey protein concentrate and vetch protein isolates, were explored for protein supplementation. Fourteen date bar treatments were produced using a central composite design (CCD) with 2 variables and 3 levels for each variable. Date bars were then analyzed for nutritional profile. Proximate composition revealed that addition of whey protein concentrate and vetch protein isolates improved the nutritional profile of date bars. Protein level, texture, and taste were considerably improved by incorporating 6.05% whey protein concentrate and 4.35% vetch protein isolates in date bar without affecting any sensory characteristics during storage. Response surface methodology was observed as an economical and effective tool to optimize the ingredient level and to discriminate the interactive effects of independent variables.


Assuntos
Proteínas Alimentares/análise , Análise de Alimentos , Alimentos , Frutas/química , Doces/análise , Criança , Grão Comestível , Fabaceae , Manipulação de Alimentos , Humanos , Lipídeos/análise , Proteínas do Leite/análise , Nozes , Vitaminas/análise , Proteínas do Soro do Leite
13.
Food Sci Nutr ; 10(10): 3230-3240, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36249984

RESUMO

The role of vitamin D in improving maternal health and reducing the risk of developmental disorders in fetus has been an important domain of research since the past few years. Vitamin D, owing to its immunomodulatory, anti-inflammatory, developmental roles, and regulating calcium homeostasis, is predicted to have a significant influence on maternal and fetal health status. Several observational studies and clinical trials, determining the impact of vitamin D on gestational diabetes, C-section, postpartum depression, pre-eclampsia, miscarriages, and preterm delivery, have been elaborated in this review. In addition, fetal birth defects including neurological development, reduced birth weight, respiratory infections, bone development, and altered anthropometrics have also been summarized with available evidences. Other important mechanisms related to the roles of vitamin D in the body are also explained. Furthermore, recent studies determining the effect of vitamin D at genetic level will also help in understanding and future design of research in the area of maternal and fetal health.

14.
Front Nutr ; 9: 780151, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35694165

RESUMO

Background: In recent years, researchers have focused on functional ingredients, functional foods, and nutraceuticals due to the rapidly increasing interest in bioactive components, especially in bioactive peptides. Dairy proteins are a rich and balanced source of amino acids and their derived bioactive peptides, which possess biological and physiological properties. In the dairy industry, microbial fermentation and enzymatic hydrolysis are promising methods for producing bioactive peptides because of their rapid efficiency, and mild reaction conditions. However, these methods utilize less raw material, take long reaction time, result in low yields, and low activity products when used alone, which pose industry to seek for novel methods as pretreatments to increase the yield of bioactive peptides. Scope and Approach: This review emphasizes the production of peptides from the dairy proteins and discusses the potential use of novel technologies as pretreatments to conventional methods of bioactive peptides production from dairy proteins, including the mechanisms of novel technologies along with respective examples of use, advantages, limitations, and challenges to each technology. Key Findings and Conclusion: Noteworthily, hydrolysis of dairy proteins liberate wide-range of peptides that possess remarkable biological functions to maintain human health. Novel technologies in the dairy industry such as ultrasound-assisted processing (UAP), microwave-assisted processing (MAP), and high pressure processing (HPP) are innovative and environmentally friendly. Generally, novel technologies are less effectual compared to conventional methods, therefore used in combination with fermentation and enzymatic hydrolysis, and are promising pretreatments to modify peptides' profile, improve the yields, and high liberation of bioactive peptides as compared to conventional technologies. UAP is an innovative and most efficient technology as its mechanical effects and cavitation change the protein conformation, increase the biological activities of enzymes, and enhance enzymatic hydrolysis reaction rate.

15.
Microorganisms ; 11(1)2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36677377

RESUMO

Bacteriocins are ribosomal-synthesized peptides or proteins produced by bacterial strains and can inhibit pathogenic bacteria. Numerous factors influence the potential activity of bacteriocins in food matrices. For example, food additives usage, chemical composition, physical conditions of food, and sensitivity of proteolytic enzymes can constrain the application of bacteriocins as beneficial food preservatives. However, novel bacteriocin nanoencapsulation has appeared as an encouraging solution. In this review, we highlight the bacteriocins produced by Gram-negative bacteria and Gram-positive bacteria including lactic acid bacteria that have shown positive results as potential food preservatives. In addition, this review encompasses the major focus on bacteriocins encapsulation with nanotechnology to enhance the antimicrobial action of bacteriocins. Several strategies can be employed to encapsulate bacteriocins; however, the nanotechnological approach is one of the most effective strategies for avoiding limitations. Nanoparticles such as liposomes, chitosan, protein, and polysaccharides have been discussed to show their importance in the nanoencapsulation method. The nanoparticles are combined with bacteriocins to develop the nano-encapsulated bacteriocins from Gram-negative and Gram-positive bacteria including LAB. In food systems, nanoencapsulation enhances the stability and antimicrobial functionality of active peptides. This nanotechnological application provides a formulation of a broad range of antimicrobial peptides at the industry-scale level. Nano-formulated bacteriocins have been discussed along with examples to show a broader antimicrobial spectrum, increase bacteriocins' applicability, extend antimicrobial spectrum and enhance stability.

16.
J Food Biochem ; 46(10): e14286, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35929489

RESUMO

Abnormal uric acid level result in the development of hyperuricemia and hallmark of various diseases, including renal injury, gout, cardiovascular disorders, and non-alcoholic fatty liver. This study was designed to explore the anti-inflammatory potential of stevia residue extract (STR) against hyperuricemia-associated renal injury in mice. The results revealed that STR at dosages of 150 and 300 mg/kg bw and allopurinol markedly modulated serum uric acid, blood urea nitrogen, and creatinine in hyperuricemic mice. Serum and renal cytokine levels (IL-18, IL-6, IL-1Β, and TNF-α) were also restored by STR treatments. Furthermore, mRNA and immunohistochemistry (IHC) analysis revealed that STR ameliorates UA (uric acid)-associated renal inflammation, fibrosis, and EMT (epithelial-mesenchymal transition) via MMPS (matrix metalloproteinases), inhibiting NF-κB/NLRP3 activation by the AMPK/SIRT1 pathway and modulating the JAK2-STAT3 and Nrf2 signaling pathways. In summary, the present study provided experimental evidence that STR is an ideal candidate for the treatment of hyperuricemia-mediated renal inflammation. PRACTICAL APPLICATIONS: The higher uric acid results in hyperuricemia and gout. The available options for the treatment of hyperuricemia and gout are the use of allopurinol, and colchicine drugs, etc. These drugs possess several undesirable side effect. The polyphenolic compounds are abundantly present in plants, for example, stevia residue extract (STR) exert a positive effect on human health. From this study results, we can recommend that polyphenolic compounds enrich STR could be applied to develop treatment options for the treatment of hyperuricemia and gout.


Assuntos
Medicamentos de Ervas Chinesas , Gota , Hiperuricemia , Stevia , Proteínas Quinases Ativadas por AMP/farmacologia , Alopurinol/metabolismo , Alopurinol/farmacologia , Alopurinol/uso terapêutico , Animais , Anti-Inflamatórios/metabolismo , Anti-Inflamatórios/farmacologia , Colchicina/metabolismo , Colchicina/farmacologia , Colchicina/uso terapêutico , Creatinina/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Gota/tratamento farmacológico , Gota/metabolismo , Humanos , Hiperuricemia/tratamento farmacológico , Hiperuricemia/metabolismo , Inflamação/metabolismo , Interleucina-18/metabolismo , Interleucina-18/farmacologia , Interleucina-18/uso terapêutico , Interleucina-6/metabolismo , Rim , Camundongos , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR , RNA Mensageiro/metabolismo , Sirtuína 1/metabolismo , Stevia/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Ácido Úrico
17.
Foods ; 11(6)2022 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-35327305

RESUMO

Stevia rebaudiana (Bertoni) leaves consist of dietetically important diterpene steviol glycosides (SGs): stevioside (ST) and rebaudioside-A (Reb-A). ST and Reb-A are key sweetening compounds exhibiting a sweetening potential of 100 to 300 times more intense than that of table sucrose. Ultrasound-assisted extraction (UAE) of SGs was optimized by effective process optimization techniques, such as response surface methodology (RSM) and artificial neural network (ANN) modeling coupled with genetic algorithm (GA) as a function of ethanol concentration (X1: 0-100%), sonication time (X2: 10-54 min), and leaf-solvent ratio (X3: 0.148-0.313 g·mL-1). The maximum target responses were obtained at optimum UAE conditions of 75% (X1), 43 min (X2), and 0.28 g·mL-1 (X3). ANN-GA as a potential alternative indicated superiority to RSM. UAE as a green technology proved superior to conventional maceration extraction (CME) with reduced resource consumption. Moreover, UAE resulted in a higher total extract yield (TEY) and SGs including Reb-A and ST yields as compared to those that were obtained by CME with a marked reduction in resource consumption and CO2 emission. The findings of the present study evidenced the significance of UAE as an ecofriendly extraction method for extracting SGs, and UAE scale-up could be employed for effectiveness on an industrial scale. These findings evidenced that the UAE is a high-efficiency extraction method with an improved statistical approach.

18.
J Food Biochem ; 46(8): e14168, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35393673

RESUMO

This work aimed to identify novel angiotensin-converting-enzyme (ACE) inhibitory peptides from Macadamia integrifolia antimicrobial protein 2 (MiAMP2). The MiAMP2 protein was hydrolyzed through in silico digestion, and the generated peptides were screened for ACE inhibitory activity. The in silico enzyme digestion results revealed that 18 unreported peptides were obtained using AHTPDB and BIOPEP-UWM, and none were thought to be toxic based on absorption, distribution, metabolism, and excretion (ADMET) prediction. PGPR, RPLY, MNPQR, and AAPR were predicted to exhibit good biological activity. The molecular docking results revealed that the four peptides tightly bound to the active pocket of ACE via hydrogen bonds and hydrophobic interactions, among which RPLY and MNPQR bound to ACE more strongly. The in vitro assay results confirmed that RPLY and MNPQR peptides inhibited ACE via competitive manner. These results provide theoretical guidance for the development of novel foodborne antihypertensive peptides from Macadamia nut proteins. PRACTICAL APPLICATIONS: This study provides new insight on the inhibitory potential of Macadamia nut peptides against ACE, which may be further applied to the development of antihypertensive peptides in the medical industry.


Assuntos
Anti-Infecciosos , Anti-Hipertensivos , Inibidores da Enzima Conversora de Angiotensina/química , Angiotensinas , Anti-Infecciosos/farmacologia , Anti-Hipertensivos/química , Macadamia/metabolismo , Simulação de Acoplamento Molecular , Peptídeos/química , Peptídeos/farmacologia
19.
Food Sci Nutr ; 10(2): 422-435, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35154679

RESUMO

Vine tea (Ampelopsis grossedentata) is a tea plant cultivated south of the Chinese Yangtze River. It has anti-inflammatory properties and is used to normalize blood circulation and detoxification. The leaves of vine tea are the most abundant source of flavonoids, such as dihydromyricetin and myricetin. However, as the main bioactive flavonoid in vine tea, dihydromyricetin was the main focus of previous research. This study aimed to explore the antibacterial activities of vine tea against selected foodborne pathogens. The antimicrobial activity of vine tea extract was evaluated by the agar well diffusion method. Cell membrane integrity and bactericidal kinetics, along with physical damage to the cell membrane, were also observed. The extract was analyzed using a high-performance liquid chromatography-diode array detector (HPLC-DAD), and the results were confirmed using a modified version of a previously published method that combined liquid chromatography and electrospray-ionized quadrupole time-of-flight mass spectrometry (LC-ESI-QTOF/MS). Cell membrane integrity and bactericidal kinetics were determined by releasing intracellular material in suspension and monitoring it at 260 nm using an ultraviolet (UV) spectrophotometer. A scanning electron microscope (SEM) was used to detect morphological alterations and physical damage to the cell membrane. Six compounds were isolated successfully: (1) myricetin (C15H10O8), (2) myricetin 3-O-rhamnoside (C21H20O12), (3) 5,7,8,3,4-pentahydroxyisoflavone (C15H10O7), (4) dihydroquercetin (C15H12O7), (5) 6,8-dihydroxykaempferol (C15H10O8), and (6) ellagic acid glucoside (C20H16O13). Among these bioactive compounds, C15H10O7 was found to have vigorous antimicrobial activity against Bacillus cereus (AS11846) and Staphylococcus aureus (CMCCB26003). A dose-dependent bactericidal kinetics with a higher degree of absorbance at optical density 260 (OD260) was observed when the bacterial suspension was incubated with C15H10O7 for 8 h. Furthermore, a scanning electron microscope study revealed physical damage to the cell membrane. In addition, the action mode of C15H10O7 was on the cell wall of the target microorganism. Together, these results suggest that C15H10O7 has vigorous antimicrobial activity and can be used as a potent antimicrobial agent in the food processing industry.

20.
Food Sci Nutr ; 9(6): 3091-3099, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34136174

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is a chronic liver disease that can lead to carcinoma, cirrhosis, and death. Since no approved medications are available, dietary interventions that include bioactive compounds have been recommended. This study investigated the effects of black ginseng extracts (BGE) and aged black garlic extracts (AGE) on high-fat diet (HFD)-induced obese mice. Micrograph of liver tissues of mice fed with BGE and AGE showed less lipid droplets. The BGE and AGE supplements individually and in combination lowered the marker enzymes, aminotransferase (AST), and alanine aminotransferase (ALT) levels indicating their hepatoprotective effects. Compared to the plants extracts alone, the combination of the extracts resulted in lower total cholesterol (TC) and low-density lipoproteins cholesterol (LDL-C), which are risk markers for cardiovascular morbidity and mortality. Diets with the combination of BGE and AGE supplements had higher superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) activities, and lower malondialdehyde indicating the synergistic effects of the extracts. Irrespective of the diet type, all treated groups showed lower tumor necrosis factor (TNF-α) values as compared to HFD, which indicated overall immunomodulatory effect of both extracts. Therefore, the innovative formulation formed by the combination of BGE and AGE can provide hepatoprotective effects via modulating glycometabolism, lipometabolism, oxidative stress, and inflammation in mice.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA