Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Cell ; 175(5): 1380-1392.e14, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30343895

RESUMO

ADP-ribosylation of proteins can profoundly impact their function and serves as an effective mechanism by which bacterial toxins impair eukaryotic cell processes. Here, we report the discovery that bacteria also employ ADP-ribosylating toxins against each other during interspecies competition. We demonstrate that one such toxin from Serratia proteamaculans interrupts the division of competing cells by modifying the essential bacterial tubulin-like protein, FtsZ, adjacent to its protomer interface, blocking its capacity to polymerize. The structure of the toxin in complex with its immunity determinant revealed two distinct modes of inhibition: active site occlusion and enzymatic removal of ADP-ribose modifications. We show that each is sufficient to support toxin immunity; however, the latter additionally provides unprecedented broad protection against non-cognate ADP-ribosylating effectors. Our findings reveal how an interbacterial arms race has produced a unique solution for safeguarding the integrity of bacterial cell division machinery against inactivating post-translational modifications.


Assuntos
ADP Ribose Transferases/metabolismo , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Proteínas do Citoesqueleto/metabolismo , N-Glicosil Hidrolases/metabolismo , ADP Ribose Transferases/química , ADP Ribose Transferases/genética , ADP-Ribosilação , Difosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/antagonistas & inibidores , Toxinas Bacterianas/química , Toxinas Bacterianas/genética , Domínio Catalítico , Proteínas do Citoesqueleto/antagonistas & inibidores , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/imunologia , Escherichia coli/metabolismo , Humanos , Mutagênese Sítio-Dirigida , N-Glicosil Hidrolases/química , N-Glicosil Hidrolases/genética , Estrutura Terciária de Proteína , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Alinhamento de Sequência , Serratia/metabolismo , Imagem com Lapso de Tempo
2.
Mol Microbiol ; 115(3): 478-489, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33410158

RESUMO

Type VII secretion systems (T7SSs) are poorly understood protein export apparatuses found in mycobacteria and many species of Gram-positive bacteria. To date, this pathway has predominantly been studied in Mycobacterium tuberculosis, where it has been shown to play an essential role in virulence; however, much less studied is an evolutionarily divergent subfamily of T7SSs referred to as the T7SSb. The T7SSb is found in the major Gram-positive phylum Firmicutes where it was recently shown to target both eukaryotic and prokaryotic cells, suggesting a dual role for this pathway in host-microbe and microbe-microbe interactions. In this review, we compare the current understanding of the molecular architectures and substrate repertoires of the well-studied mycobacterial T7SSa systems to that of recently characterized T7SSb pathways and highlight how these differences may explain the observed biological functions of this understudied protein export machine.


Assuntos
Bactérias Gram-Positivas/metabolismo , Bactérias Gram-Positivas/patogenicidade , Mycobacterium tuberculosis/fisiologia , Mycobacterium tuberculosis/patogenicidade , Sistemas de Secreção Tipo VII/fisiologia , Virulência , Animais , Proteínas de Bactérias/metabolismo , Bactérias Gram-Positivas/ultraestrutura , Interações entre Hospedeiro e Microrganismos , Humanos , Interações Microbianas , Domínios Proteicos , Sistemas de Translocação de Proteínas/metabolismo , Sistemas de Translocação de Proteínas/ultraestrutura , Tuberculose/microbiologia , Sistemas de Secreção Tipo VII/ultraestrutura
3.
Infect Immun ; 87(2)2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30455198

RESUMO

The Mycobacterium tuberculosis type VII secretion system ESX-5, which has been implicated in virulence, is activated at the transcriptional level by the phosphate starvation-responsive Pst/SenX3-RegX3 signal transduction system. Deletion of pstA1, which encodes a Pst phosphate transporter component, causes constitutive activation of the response regulator RegX3, hypersecretion of ESX-5 substrates and attenuation in the mouse infection model. We hypothesized that constitutive activation of ESX-5 secretion causes attenuation of the ΔpstA1 mutant. To test this, we uncoupled ESX-5 from regulation by RegX3. Using electrophoretic mobility shift assays, we defined a RegX3 binding site in the esx-5 locus. Deletion or mutation of the RegX3 binding site reversed hypersecretion of the ESX-5 substrate EsxN by the ΔpstA1 mutant and abrogated induction of EsxN secretion in response to phosphate limitation by wild-type M. tuberculosis The esx-5 RegX3 binding site deletion (ΔBS) also suppressed attenuation of the ΔpstA1 mutant in Irgm1-/- mice. These data suggest that constitutive ESX-5 secretion sensitizes M. tuberculosis to an immune response that still occurs in Irgm1-/- mice. However, the ΔpstA1 ΔBS mutant remained attenuated in both NOS2-/- and C57BL/6 mice, suggesting that factors other than ESX-5 secretion also contribute to attenuation of the ΔpstA1 mutant. In addition, a ΔpstA1 ΔesxN mutant lacking the hypersecreted ESX-5 substrate EsxN remained attenuated in Irgm1-/- mice, suggesting that ESX-5 substrates other than EsxN cause increased susceptibility to host immunity. Our data indicate that while M. tuberculosis requires ESX-5 for virulence, it tightly controls secretion of ESX-5 substrates to avoid elimination by host immune responses.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Ligação ao GTP/deficiência , Mycobacterium tuberculosis , Tuberculose/imunologia , Fatores de Virulência/metabolismo , Virulência/fisiologia , Animais , Proteínas de Bactérias/genética , Sistemas de Secreção Bacterianos/genética , Regulação Bacteriana da Expressão Gênica , Camundongos , Camundongos Endogâmicos C57BL , Mycobacterium tuberculosis/imunologia , Mycobacterium tuberculosis/patogenicidade , Tuberculose/microbiologia
4.
Biochim Biophys Acta Proteins Proteom ; 1865(6): 715-724, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28400297

RESUMO

EccA family proteins are conserved components of ESX secretion pathways in M. tuberculosis H37Rv. Here, we report the characterization of EccA3 (Rv0282), a CbbX family AAA (ATPases Associated with diverse cellular Activities) protein from the ESX-3 pathway that is required for in vitro growth of mycobacteria, secretion of virulence factors, and acquisition of iron and zinc. EccA3 is a thermostable ATPase with a molecular weight of ~68kDa. It exists as a dodecamer in the apo form and associates as a hexamer in the presence of ATP. Its C-terminal region consists of a CbbX-like AAA-domain while the N-terminal region contains a tetratricopeptide repeat (TPR) domain with lower homology to other EccA-type proteins. Further, the C-terminal domain functions as the oligomerization domain and also exhibits ATPase activity. Mutational analysis, steady state kinetics and molecular docking studies identify R573 as the important 'sensor arginine' and R505 as an 'arginine finger' in EccA3. Dynamic fluorescence quenching experiments suggest that the N-terminal domain moves closer to the C-terminal domain upon ATP-binding. The ATP-dependent 'open-close' relative movements of the two domains might help EccA3 interaction and secretion of essential virulence factors.


Assuntos
Adenosina Trifosfatases/metabolismo , Mycobacterium tuberculosis/enzimologia , Adenosina Trifosfatases/química , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Cromatografia em Gel , Dicroísmo Circular , Estabilidade Enzimática , Hidrólise , Simulação de Acoplamento Molecular , Ligação Proteica , Homologia de Sequência de Aminoácidos , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta
5.
Curr Genet ; 62(4): 759-763, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27105642

RESUMO

Pathogenic microbes commonly respond to environmental cues in the host by activating specialized protein secretion systems. Mycobacterium tuberculosis uses the specialized Type VII ESX protein secretion systems to transport a subset of effector proteins. The ESX-5 secretion system is involved in virulence, but both the mechanism of regulation and activating signal were unknown. Our work, reviewed here, has established that the phosphate sensing Pst/SenX3-RegX3 system directly activates ESX-5 secretion in response to phosphate limitation, a relevant environmental signal likely encountered by M. tuberculosis in the host. This review focuses on how elucidation of the ESX-5 regulatory network provides insight into its biological roles, which may include both phosphate acquisition and pathogenesis.


Assuntos
Proteínas de Bactérias/metabolismo , Sistemas de Secreção Bacterianos , Mycobacterium tuberculosis/metabolismo , Fosfatos/metabolismo , Animais , Proteínas de Bactérias/genética , Interações Hospedeiro-Patógeno , Humanos , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/imunologia , Transdução de Sinais , Tuberculose/imunologia , Tuberculose/microbiologia
6.
mBio ; 14(4): e0057323, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37350613

RESUMO

Mycobacterium kansasii (Mk) is an opportunistic pathogen that is frequently isolated from urban water systems, posing a health risk to susceptible individuals. Despite its ability to cause tuberculosis-like pulmonary disease, very few studies have probed the genetics of this opportunistic pathogen. Here, we report a comprehensive essentiality analysis of the Mk genome. Deep sequencing of a high-density library of Mk Himar1 transposon mutants revealed that 86.8% of the chromosomal thymine-adenine (TA) dinucleotide target sites were permissive to insertion, leaving 13.2% TA sites unoccupied. Our analysis identified 394 of the 5,350 annotated open reading frames (ORFs) as essential. The majority of these essential ORFs (84.8%) share essential mutual orthologs with Mycobacterium tuberculosis (Mtb). A comparative genomics analysis identified 139 Mk essential ORFs that share essential orthologs in four other species of mycobacteria. Thirteen Mk essential ORFs share orthologs in all four species that were identified as being not essential, while only two Mk essential ORFs are absent in all species compared. We used the essentiality data and a comparative genomics analysis reported here to highlight differences in essentiality between candidate Mtb drug targets and the corresponding Mk orthologs. Our findings suggest that the Mk genome encodes redundant or additional pathways that may confound validation of potential Mtb drugs and drug target candidates against the opportunistic pathogen. Additionally, we identified 57 intergenic regions containing four or more consecutive unoccupied TA sites. A disproportionally large number of these regions were located upstream of pe/ppe genes. Finally, we present an essentiality and orthology analysis of the Mk pRAW-like plasmid, pMK1248. IMPORTANCE Mk is one of the most common nontuberculous mycobacterial pathogens associated with tuberculosis-like pulmonary disease. Drug resistance emergence is a threat to the control of Mk infections, which already requires long-term, multidrug courses. A comprehensive understanding of Mk biology is critical to facilitate the development of new and more efficacious therapeutics against Mk. We combined transposon-based mutagenesis with analysis of insertion site identification data to uncover genes and other genomic regions required for Mk growth. We also compared the gene essentiality data set of Mk to those available for several other mycobacteria. This analysis highlighted key similarities and differences in the biology of Mk compared to these other species. Altogether, the genome-wide essentiality information generated and the results of the cross-species comparative genomics analysis represent valuable resources to assist the process of identifying and prioritizing potential Mk drug target candidates and to guide future studies on Mk biology.


Assuntos
Mycobacterium kansasii , Mycobacterium tuberculosis , Tuberculose , Humanos , Mycobacterium kansasii/genética , Mutagênese , Mycobacterium tuberculosis/genética , Tuberculose/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos
7.
Emerg Microbes Infect ; 10(1): 19-36, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33290182

RESUMO

EsxA, secreted by the ESAT-6 secretion system 1 (ESX-1) secretion system, is considered the major Mycobacterium tuberculosis (Mtb) virulence determinant. However, the roles of the individual ESX-1 substrates, such as EspC, remain unclear due to their interdependency for secretion with EsxA. Here, we validated that EspC triggered ER stress-mediated apoptosis in macrophages. The EspC-mediated ER stress was involved in pro-inflammatory cytokines generation, intracellular Ca2+ release, and reactive oxygen species accumulation. Mitochondrial transmembrane potential dissipation and mitochondrial outer membrane permeabilization occurred in EspC-treated macrophages, causing apoptosis. Furthermore, ER stress-mediated apoptosis was effectively induced in EspC-overexpressing Mycobacterium smegmatis-infected macrophages and mice. EspC overexpression caused a significant increase in bacterial survival in the macrophages, spleens, and lungs, and accelerated mouse death was observed. Moreover, the increased viability of bacteria in the macrophages was significantly reduced by pretreatment with the apoptosis inhibitor. Overall, our results revealed that EspC is an essential ESX-1 protein for Mtb-host interactions and EspC-induced ER stress-mediated apoptosis may be employed by Mtb to establish and spread infection. Given the critical roles of the ESX systems in Mtb pathogenesis and immunity, our findings offer new perspectives on the complex host-pathogen interactions and mechanisms underlying ESX-1-mediated pathogenesis.


Assuntos
Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Macrófagos/citologia , Mycobacterium tuberculosis/crescimento & desenvolvimento , Animais , Apoptose , Cálcio/metabolismo , Estresse do Retículo Endoplasmático , Pulmão/microbiologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Camundongos , Viabilidade Microbiana , Mycobacterium tuberculosis/metabolismo , Mycobacterium tuberculosis/patogenicidade , Células RAW 264.7 , Espécies Reativas de Oxigênio/metabolismo , Baço/microbiologia
8.
Eur J Microbiol Immunol (Bp) ; 10(4): 202-209, 2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-33174865

RESUMO

Mycobacterium tuberculosis, the causative agent of Tuberculosis has plagued humankind for ages and has surfaced stronger than ever with the advent of drug resistance. Mycobacteria are adept at evading the host immune system and establishing infection by engaging host factors and secreting several virulence factors. Hence these secretion systems play a key role in mycobacterial pathogenesis. The type VII secretion system or ESX (early secretory antigenic target (ESAT6) secretion) system is one such crucial system that comprises five different pathways having distinct roles in mycobacterial proliferation, pathogenesis, cytosolic escape within macrophages, regulation of macrophage apoptosis, metal ion homeostasis, etc. ESX 1-5 systems are implicated in the secretion of a plethora of proteins, of which only a few are functionally characterized. Here we summarize the current knowledge of ESX secretion systems of mycobacteria with a special focus on ESX-1 and ESX-5 systems that subvert macrophage defenses and help mycobacteria to establish their niche within the macrophage.

9.
Vaccine ; 38(45): 7156-7165, 2020 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-32978002

RESUMO

Although vaccination with BCG prevents disseminated forms of childhood tuberculosis (TB), it does not protect against pulmonary infection or Mycobacterium tuberculosis (Mtb) transmission. In this study, we generated a complete deletion mutant of the Mtb Esx-5 type VII secretion system (Mtb Δesx-5). Mtb Δesx-5 was highly attenuated and safe in immunocompromised mice. When tested as a vaccine candidate to boost BCG-primed immunity, Mtb Δesx-5 improved protection against highly virulent Mtb strains in the murine and guinea pig models of TB. Enhanced protection provided by heterologous BCG-prime plus Mtb Δesx-5 boost regimen was associated with increased pulmonary influx of central memory T cells (TCM), follicular helper T cells (TFH) and activated monocytes. Conversely, lower numbers of T cells expressing exhaustion markers were observed in vaccinated animals. Our results suggest that boosting BCG-primed immunity with Mtb Δesx-5 is a potential approach to improve protective immunity against Mtb. Further insight into the mechanism of action of this novel prime-boost approach is warranted.


Assuntos
Mycobacterium bovis , Mycobacterium tuberculosis , Tuberculose , Sistemas de Secreção Tipo VII , Animais , Antígenos de Bactérias , Vacina BCG , Cobaias , Imunização Secundária , Camundongos , Mycobacterium tuberculosis/genética , Tuberculose/prevenção & controle , Vacinação
10.
Artigo em Inglês | MEDLINE | ID: mdl-31134163

RESUMO

Mycobacterium tuberculosis, as a facultative intracellular pathogen, can interact with host macrophages and modulate macrophage function to influence innate and adaptive immunity. Proteins secreted by the ESX-1 secretion system are involved in this relationship. Although the importance of ESX-1 in host-pathogen interactions and virulence is well-known, the primary role is ascribed to EsxA (EAST-6) in mycobacterial pathogenesis and the functions of individual components in the interactions between pathogens and macrophages are still unclear. Here, we investigated the effects of EspC on macrophage activation. The EspC protein is encoded by an espA/C/D cluster, which is not linked to the esx-1 locus, but is essential for the secretion of the major virulence factors of ESX-1, EsxA and EsxB. Our results showed that both EspC protein and EspC overexpression in M. smegmatis induced pro-inflammatory cytokines and enhanced surface marker expression. This mechanism was dependent on Toll-like receptor 4 (TLR4), as demonstrated using EspC-treated macrophages from TLR4-/- mice, leading to decreased pro-inflammatory cytokine secretion and surface marker expression compared with those from wild-type mice. Immunoprecipitation and immunofluorescence assays showed that EspC interacted with TLR4 directly. Moreover, EspC could activate macrophages and promote antigen presentation by inducing mitogen-activated protein kinase (MAPK) phosphorylation and nuclear factor-κB activation. The EspC-induced cytokine expression, surface marker upregulation, and MAPK signaling activation were inhibited when macrophages were blocked with anti-TLR4 antibodies or pretreated with MAPK inhibitors. Furthermore, our results showed that EspC overexpression enhanced the survival of M. smegmatis within macrophages and under stress conditions. Taken together, our results indicated that EspC may be another ESX-1 virulence factor that not only modulates the host innate immune response by activating macrophages through TLR4-dependent MAPK signaling but also plays an important role in the survival of pathogenic mycobacteria in host cells.


Assuntos
Secreções Corporais , Ativação de Macrófagos/fisiologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Mycobacterium tuberculosis/imunologia , Mycobacterium tuberculosis/metabolismo , Proteína C/metabolismo , Transdução de Sinais , Receptor 4 Toll-Like/metabolismo , Animais , Antígenos de Bactérias , Proteínas de Bactérias , Citocinas , Interações Hospedeiro-Patógeno , Humanos , Imunidade Inata , Ativação de Macrófagos/imunologia , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células RAW 264.7 , Células THP-1 , Receptor 2 Toll-Like , Receptor 4 Toll-Like/genética , Fatores de Virulência/metabolismo
11.
mBio ; 9(3)2018 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-29895636

RESUMO

Mycobacterium tuberculosis releases membrane vesicles (MV) that modulate host immune responses and aid in iron acquisition, although they may have additional unappreciated functions. MV production appears to be a regulated process, but virR remains the only characterized genetic regulator of vesiculogenesis. Here, we present data supporting a role for the M. tuberculosis Pst/SenX3-RegX3 signal transduction system in regulating MV production. Deletion of pstA1, which encodes a transmembrane component of the phosphate-specific transport (Pst) system, causes constitutive activation of the SenX3-RegX3 two-component system, leading to increased protein secretion via the specialized ESX-5 type VII secretion system. Using proteomic mass spectrometry, we identified several additional proteins hyper-secreted by the ΔpstA1 mutant, including LpqH, an MV-associated lipoprotein. Nanoparticle tracking analysis revealed a 15-fold increase in MV production by the ΔpstA1 mutant. Both hyper-secretion of LpqH and increased MV release required RegX3 but were independent of VirR, suggesting that Pst/SenX3-RegX3 controls MV release by a novel mechanism. Prior proteomic analysis identified ESX-5 substrates associated with MV. We therefore hypothesized that MV release requires ESX-5 activity. We constructed strains that conditionally express eccD5 , which encodes the predicted ESX-5 transmembrane channel. Upon EccD5 depletion, we observed reduced secretion of the ESX-5 substrates EsxN and PPE41, but MV release was unaffected. Our data suggest that ESX-5 does not affect vesicle production and imply that further characterization of the Pst/SenX3-RegX3 regulon might reveal novel mechanisms of M. tuberculosis vesicle biogenesis.IMPORTANCE In Gram-negative bacteria, MV derived from the outer membrane have diverse functions in bacterial physiology and pathogenesis, and several factors regulating their production have been identified. Though Gram-positive bacteria and mycobacteria that lack an outer membrane also produce vesicles with described roles in pathogenesis, the mechanisms of MV biogenesis in these organisms remain poorly characterized. Defining mechanisms of MV biogenesis might yield significant insights into the importance of MV production during infection. In M. tuberculosis, only a single genetic element, virR, is known to regulate MV production. Our work reveals that the Pst/SenX3-RegX3 signal transduction system is a novel regulator of MV biogenesis that controls MV production by a mechanism that is independent of both VirR and activation of the specialized ESX-5 protein secretion system. Understanding which genes in the RegX3 regulon cause increased MV production might reveal novel molecular mechanisms of MV release.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Bactérias/metabolismo , Sistemas de Secreção Bacterianos/metabolismo , Vesículas Extracelulares/metabolismo , Mycobacterium tuberculosis/enzimologia , Fosfotransferases/metabolismo , Tuberculose/microbiologia , Fatores de Virulência/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Proteínas de Bactérias/genética , Sistemas de Secreção Bacterianos/genética , Vesículas Extracelulares/genética , Regulação Bacteriana da Expressão Gênica , Humanos , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Fosfotransferases/genética , Transdução de Sinais , Fatores de Virulência/genética
12.
J Mol Biol ; 427(5): 1119-32, 2015 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-24979678

RESUMO

Among protein secretion systems, there are specialized ATPases that serve different functions such as substrate recognition, substrate unfolding, and assembly of the secretory machinery. ESX (early secretory antigen target 6 kDa secretion) protein secretion systems require FtsK/SpoIIIE family ATPases but the specific function of these ATPases is poorly understood. The ATPases of ESX secretion systems have a unique domain architecture among proteins of the FtsK/SpoIIIE family. All well-studied FtsK family ATPases to date have one ATPase domain and oligomerize to form a functional molecular machine, most commonly a hexameric ring. In contrast, the ESX ATPases have three ATPase domains, encoded either by a single gene or by two operonic genes. It is currently unknown which of the ATPase domains is catalytically functional and whether each domain plays the same or a different function. Here we focus on the ATPases of two ESX systems, the ESX-1 system of Mycobacterium tuberculosis and the yuk system of Bacillus subtilis. We show that ATP hydrolysis by the ESX ATPase is required for secretion, suggesting that this enzyme at least partly fuels protein translocation. We further show that individual ATPase domains play distinct roles in substrate translocation and complex formation. Comparing the single-chain and split ESX ATPases, we reveal differences in the requirements of these unique secretory ATPases.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/metabolismo , Sequência de Aminoácidos , Antígenos de Bactérias/metabolismo , Bacillus subtilis/metabolismo , Dados de Sequência Molecular , Mycobacterium tuberculosis/metabolismo , Estrutura Terciária de Proteína/fisiologia , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA