Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
1.
Article in English | MEDLINE | ID: mdl-29507073

ABSTRACT

Cutaneous leishmaniasis (CL) is caused by several species of the protozoan parasite Leishmania, affecting an estimated 10 million people worldwide. Previously reported strategies for the development of topical CL treatments have focused primarily on drug permeation and formulation optimization as the means to increase treatment efficacy. Our approach aims to identify compounds with antileishmanial activity and properties consistent with topical administration. Of the test compounds, five benzoxaboroles showed potent activity (50% effective concentration [EC50] < 5 µM) against intracellular amastigotes of at least one Leishmania species and acceptable activity (20 µM < EC50 < 30 µM) against two more species. Benzoxaborole compounds were further prioritized on the basis of the in vitro evaluation of progression criteria related to skin permeation, such as the partition coefficient and solubility. An MDCKII-hMDR1 cell assay showed overall good permeability and no significant interaction with the P-glycoprotein transporter for all substrates except LSH002 and LSH031. The benzoxaboroles were degraded, to some extent, by skin enzymes but had stability superior to that of para-hydroxybenzoate compounds, which are known skin esterase substrates. Evaluation of permeation through reconstructed human epidermis showed LSH002 to be the most permeant, followed by LSH003 and LSH001. Skin disposition studies following finite drug formulation application to mouse skin demonstrated the highest permeation for LSH001, followed by LSH003 and LSH002, with a significantly larger amount of LSH001 than the other compounds being retained in skin. Finally, the efficacy of the leads (LSH001, LSH002, and LSH003) against Leishmania major was tested in vivo LSH001 suppressed lesion growth upon topical application, and LSH003 reduced the lesion size following oral administration.


Subject(s)
Antiprotozoal Agents/pharmacokinetics , Antiprotozoal Agents/therapeutic use , Leishmaniasis, Cutaneous/drug therapy , Administration, Oral , Administration, Topical , Antiprotozoal Agents/administration & dosage , Boron Compounds/administration & dosage , Boron Compounds/pharmacokinetics , Boron Compounds/therapeutic use , Leishmaniasis, Cutaneous/parasitology
2.
Bioorg Med Chem Lett ; 28(1): 6-10, 2018 01 01.
Article in English | MEDLINE | ID: mdl-29169674

ABSTRACT

Novel l-valinate amide benzoxaboroles and analogues were designed and synthesized for a structure-activity-relationship (SAR) investigation to optimize the growth inhibitory activity against Trypanosoma congolense (T. congolense) and Trypanosoma vivax (T. vivax) parasites. The study identified 4-fluorobenzyl (1-hydroxy-7-methyl-1,3-dihydrobenzo[c][1,2]oxaborole-6-carbonyl)-l-valinate (5, AN11736), which showed IC50 values of 0.15 nM against T. congolense and 1.3 nM against T. vivax, and demonstrated 100% efficacy with a single dose of 10 mg/kg against both T. congolense and T. vivax in mouse models of infection (IP dosing) and in the target animal, cattle, dosed intramuscularly. AN11736 has been advanced to early development studies.


Subject(s)
Antiprotozoal Agents/chemical synthesis , Boron Compounds/chemical synthesis , Trypanosomiasis, African/drug therapy , Valine/analogs & derivatives , Animals , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/therapeutic use , Boron Compounds/pharmacology , Boron Compounds/therapeutic use , Cattle , Mice , Structure-Activity Relationship , Trypanosoma congolense/drug effects , Trypanosoma vivax/drug effects , Trypanosomiasis, African/pathology , Trypanosomiasis, African/veterinary , Valine/chemical synthesis , Valine/pharmacology , Valine/therapeutic use
3.
Antimicrob Agents Chemother ; 60(10): 6271-80, 2016 10.
Article in English | MEDLINE | ID: mdl-27503647

ABSTRACT

The recent development and spread of extensively drug-resistant and totally drug-resistant resistant (TDR) strains of Mycobacterium tuberculosis highlight the need for new antitubercular drugs. Protein synthesis inhibitors have played an important role in the treatment of tuberculosis (TB) starting with the inclusion of streptomycin in the first combination therapies. Although parenteral aminoglycosides are a key component of therapy for multidrug-resistant TB, the oxazolidinone linezolid is the only orally available protein synthesis inhibitor that is effective against TB. Here, we show that small-molecule inhibitors of aminoacyl-tRNA synthetases (AARSs), which are known to be excellent antibacterial protein synthesis targets, are orally bioavailable and effective against M. tuberculosis in TB mouse infection models. We applied the oxaborole tRNA-trapping (OBORT) mechanism, which was first developed to target fungal cytoplasmic leucyl-tRNA synthetase (LeuRS), to M. tuberculosis LeuRS. X-ray crystallography was used to guide the design of LeuRS inhibitors that have good biochemical potency and excellent whole-cell activity against M. tuberculosis Importantly, their good oral bioavailability translates into in vivo efficacy in both the acute and chronic mouse models of TB with potency comparable to that of the frontline drug isoniazid.


Subject(s)
Antitubercular Agents/pharmacology , Leucine-tRNA Ligase/antagonists & inhibitors , Mycobacterium tuberculosis/drug effects , Protein Synthesis Inhibitors/pharmacology , Administration, Oral , Animals , Antitubercular Agents/administration & dosage , Antitubercular Agents/chemistry , Antitubercular Agents/pharmacokinetics , Disease Models, Animal , Drug Evaluation, Preclinical/methods , Female , Humans , Leucine-tRNA Ligase/chemistry , Leucine-tRNA Ligase/genetics , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Inbred Strains , Microbial Sensitivity Tests , Mycobacterium smegmatis/drug effects , Mycobacterium smegmatis/genetics , Mycobacterium tuberculosis/genetics , Protein Synthesis Inhibitors/administration & dosage , Protein Synthesis Inhibitors/chemistry , Protein Synthesis Inhibitors/pharmacokinetics , Structure-Activity Relationship , Tuberculosis/drug therapy , Vero Cells
4.
Bioorg Med Chem Lett ; 26(13): 3182-3186, 2016 07 01.
Article in English | MEDLINE | ID: mdl-27210432

ABSTRACT

Novel isoxazoline amide benzoxaboroles were designed and synthesized to optimize the ectoparasiticide activity of this chemistry series against ticks and fleas. The study identified an orally bioavailable molecule, (S)-N-((1-hydroxy-3,3-dimethyl-1,3-dihydrobenzo[c][1,2]oxaborol-6-yl)methyl)-2-methyl-4-(5-(3,4,5-trichlorophenyl)-5-(trifluoromethyl)-4,5-dihydroisoxazol-3-yl)benzamide (23), with a favorable pharmacodynamics profile in dogs (Cmax=7.42ng/mL; Tmax=26.0h; terminal half-life t1/2=127h). Compound 23, a development candidate, demonstrated 100% therapeutic effectiveness within 24h of treatment, with residual efficacy of 97% against American dog ticks (Dermacentor variabilis) on day 30 and 98% against cat fleas (Ctenocephalides felis) on day 32 after a single oral dose at 25mg/kg in dogs.


Subject(s)
Amides/pharmacology , Antiparasitic Agents/pharmacology , Boron Compounds/pharmacology , Ctenocephalides/drug effects , Dermacentor/drug effects , Ectoparasitic Infestations/drug therapy , Isoxazoles/pharmacology , Administration, Oral , Amides/administration & dosage , Amides/chemistry , Animals , Antiparasitic Agents/administration & dosage , Antiparasitic Agents/chemistry , Boron Compounds/administration & dosage , Boron Compounds/chemistry , Cats , Dogs , Dose-Response Relationship, Drug , Ectoparasitic Infestations/parasitology , Isoxazoles/administration & dosage , Isoxazoles/chemistry , Molecular Structure , Parasitic Sensitivity Tests , Structure-Activity Relationship
5.
Bioorg Med Chem Lett ; 25(23): 5589-93, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26508546

ABSTRACT

A novel series of isoxazoline benzoxaborole small molecules was designed and synthesized for a structure-activity relationship (SAR) investigation to assess the ectoparasiticide activity against ticks and fleas. The study identified an orally bioavailable molecule, (S)-3,3-dimethyl-5-(5-(3,4,5-trichlorophenyl)-5-(trifluoromethyl)-4,5-dihydroisoxazol-3-yl)benzo[c][1,2]oxaborol-1(3H)-ol (38, AN8030), which was long lasting in dogs (t1/2=22 days). Compound 38 demonstrated 97.6% therapeutic effectiveness within 24 h of treatment, with residual efficacy of 95.3% against American dog ticks (Dermacentor variabilis) on day 30% and 100% against cat fleas (Ctenocephalides felis) on day 32 after a single oral dose at 50 mg/kg in dogs.


Subject(s)
Boron Compounds/chemistry , Dog Diseases/drug therapy , Drug Discovery , Ectoparasitic Infestations/drug therapy , Isoxazoles/chemical synthesis , Administration, Oral , Animals , Boron Compounds/administration & dosage , Boron Compounds/pharmacology , Dog Diseases/parasitology , Dogs , Isoxazoles/administration & dosage , Isoxazoles/chemistry , Isoxazoles/pharmacology , Molecular Structure , Structure-Activity Relationship , Time Factors
6.
Antimicrob Agents Chemother ; 57(3): 1394-403, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23295920

ABSTRACT

Gram-negative bacteria cause approximately 70% of the infections in intensive care units. A growing number of bacterial isolates responsible for these infections are resistant to currently available antibiotics and to many in development. Most agents under development are modifications of existing drug classes, which only partially overcome existing resistance mechanisms. Therefore, new classes of Gram-negative antibacterials with truly novel modes of action are needed to circumvent these existing resistance mechanisms. We have previously identified a new a way to inhibit an aminoacyl-tRNA synthetase, leucyl-tRNA synthetase (LeuRS), in fungi via the oxaborole tRNA trapping (OBORT) mechanism. Herein, we show how we have modified the OBORT mechanism using a structure-guided approach to develop a new boron-based antibiotic class, the aminomethylbenzoxaboroles, which inhibit bacterial leucyl-tRNA synthetase and have activity against Gram-negative bacteria by largely evading the main efflux mechanisms in Escherichia coli and Pseudomonas aeruginosa. The lead analogue, AN3365, is active against Gram-negative bacteria, including Enterobacteriaceae bearing NDM-1 and KPC carbapenemases, as well as P. aeruginosa. This novel boron-based antibacterial, AN3365, has good mouse pharmacokinetics and was efficacious against E. coli and P. aeruginosa in murine thigh infection models, which suggest that this novel class of antibacterials has the potential to address this unmet medical need.


Subject(s)
Amino Acyl-tRNA Synthetases/antagonists & inhibitors , Anti-Bacterial Agents/pharmacology , Boron Compounds/pharmacology , Escherichia coli/drug effects , Gram-Negative Bacterial Infections/drug therapy , Pseudomonas aeruginosa/drug effects , Amino Acyl-tRNA Synthetases/metabolism , Animals , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/pharmacokinetics , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/metabolism , Boron Compounds/chemical synthesis , Boron Compounds/pharmacokinetics , Crystallography, X-Ray , Drug Discovery , Drug Resistance, Multiple, Bacterial/drug effects , Escherichia coli/enzymology , Female , Gram-Negative Bacterial Infections/microbiology , Humans , Leucine/metabolism , Mice , Microbial Sensitivity Tests , Molecular Docking Simulation , Pseudomonas aeruginosa/enzymology , Structure-Activity Relationship , Thigh/microbiology , beta-Lactamase Inhibitors , beta-Lactamases/metabolism
7.
Bioorg Med Chem Lett ; 23(4): 963-6, 2013 Feb 15.
Article in English | MEDLINE | ID: mdl-23312945

ABSTRACT

We have designed and synthesized a novel class of compounds based on fluoroquinolone antibacterial prototype. The design concept involved the replacement of the 3-carboxylic acid in ciprofloxacin with an oxaborole-fused ring as an acid-mimicking group. The synthetic method employed in this work provides a good example of incorporating boron atom in complex molecules with multiple functional groups. The antibacterial activity of the newly synthesized compounds has been evaluated.


Subject(s)
Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/pharmacology , Boron Compounds/chemical synthesis , Boron Compounds/pharmacology , Fluoroquinolones/chemical synthesis , Fluoroquinolones/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/chemical synthesis , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Ciprofloxacin/chemistry , Ciprofloxacin/pharmacology , Structure-Activity Relationship
8.
Bioorg Med Chem Lett ; 23(6): 1680-3, 2013 Mar 15.
Article in English | MEDLINE | ID: mdl-23411072

ABSTRACT

A series of novel 6-(aminomethylphenoxy)benzoxaborole analogs was synthesized for the investigation of the structure-activity relationship of the inhibition of TNF-alpha, IL-1beta, and IL-6, from lipopolysaccharide stimulated peripheral blood mononuclear cells. Compounds 9d and 9e showed potent activity against all three cytokines with IC50 values between 33 and 83nM. Chloro substituted analog 9e (AN3485) is considered to be a promising lead for novel anti-inflammatory agent with a favorable pharmacokinetic profile.


Subject(s)
Anti-Inflammatory Agents/chemistry , Benzoxazoles/chemistry , Boron Compounds/chemistry , Bridged Bicyclo Compounds, Heterocyclic/metabolism , Animals , Anti-Inflammatory Agents/metabolism , Anti-Inflammatory Agents/pharmacokinetics , Boron Compounds/metabolism , Boron Compounds/pharmacokinetics , Bridged Bicyclo Compounds, Heterocyclic/chemistry , Bridged Bicyclo Compounds, Heterocyclic/pharmacokinetics , Half-Life , Humans , Interleukin-1beta/antagonists & inhibitors , Interleukin-1beta/metabolism , Interleukin-6/antagonists & inhibitors , Interleukin-6/metabolism , Kinetics , Leukocytes, Mononuclear/drug effects , Lipopolysaccharides/toxicity , Mice , Protein Binding , Structure-Activity Relationship , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Tumor Necrosis Factor-alpha/metabolism
9.
Bioorg Med Chem Lett ; 23(21): 5870-3, 2013 Nov 01.
Article in English | MEDLINE | ID: mdl-24075731

ABSTRACT

Structure-activity relationships of 6-(benzoylamino)benzoxaborole analogs were investigated for the inhibition of TNF-α, IL-1ß, and IL-6 from lipopolysaccharide stimulated peripheral blood mononuclear cells. Compound 1q showed potent activity against all three cytokines with IC50 values between 0.19 and 0.50µM, inhibited LPS-induced TNF-α and IL-6 elevation in mice and improved collagen-induced arthritis in mice. Compound 1q (AN4161) is considered to be a promising lead for novel anti-inflammatory agent with an excellent pharmacokinetic profile.


Subject(s)
Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/therapeutic use , Arthritis, Experimental/drug therapy , Benzene Derivatives/chemistry , Benzene Derivatives/therapeutic use , Boron Compounds/chemistry , Boron Compounds/therapeutic use , Animals , Anti-Inflammatory Agents/pharmacokinetics , Anti-Inflammatory Agents/pharmacology , Benzene Derivatives/pharmacokinetics , Benzene Derivatives/pharmacology , Boron Compounds/pharmacokinetics , Boron Compounds/pharmacology , Interleukin-1beta/immunology , Interleukin-6/immunology , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/immunology , Lipopolysaccharides/immunology , Mice , Structure-Activity Relationship , Tumor Necrosis Factor-alpha/immunology
10.
Bioorg Med Chem Lett ; 22(3): 1299-307, 2012 Feb 01.
Article in English | MEDLINE | ID: mdl-22243961

ABSTRACT

A series of new boron-containing benzoxaborole compounds was designed and synthesized for a continuing structure-activity relationship (SAR) investigation to assess the antimalarial activity changes derived from side-chain structural variation, substituent modification on the benzene ring and removal of boron from five-membered oxaborole ring. This SAR study demonstrated that boron is required for the antimalarial activity, and discovered that three fluoro-substituted 7-(2-carboxyethyl)-1,3-dihydro-1-hydroxy-2,1-benzoxaboroles (9, 14 and 20) have excellent potencies (IC(50) 0.026-0.209 µM) against Plasmodium falciparum.


Subject(s)
Antimalarials/chemical synthesis , Antimalarials/pharmacology , Boron Compounds/chemical synthesis , Boron Compounds/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/chemical synthesis , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Fluorine/chemistry , Plasmodium falciparum/drug effects , Antimalarials/chemistry , Antimalarials/toxicity , Boron Compounds/chemistry , Boron Compounds/toxicity , Bridged Bicyclo Compounds, Heterocyclic/chemistry , Bridged Bicyclo Compounds, Heterocyclic/toxicity , Cell Survival/drug effects , HeLa Cells , Humans , Inhibitory Concentration 50 , Jurkat Cells , Molecular Structure , Structure-Activity Relationship
11.
Bioorg Med Chem Lett ; 22(8): 2993-6, 2012 Apr 15.
Article in English | MEDLINE | ID: mdl-22425454

ABSTRACT

A novel series of P3 oxo-modified macrocyclic hepatitis C virus NS3/4A serine protease inhibitor was designed, synthesized and biologically evaluated. The hydroxy-substituted inhibitor 10 demonstrated high potency in genotype 1a and 1b replicon and in the panel of HCV protease mutants. Interestingly, the t-butyl carbonate analog 9c, while not the most potent one in this series, exhibited a virtually flat potency profile in the panel of HCV protease mutants, thus providing opportunity for further optimization.


Subject(s)
Drug Discovery , Hepacivirus/drug effects , Protease Inhibitors/chemical synthesis , Protease Inhibitors/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , Cyclopropanes , Hepacivirus/genetics , Humans , Hydroxylation , Inhibitory Concentration 50 , Isoindoles , Lactams/chemistry , Lactams/pharmacology , Lactams, Macrocyclic , Molecular Structure , Mutation , Proline/analogs & derivatives , Protease Inhibitors/chemistry , Sulfonamides/chemistry , Sulfonamides/pharmacology
12.
Bioorg Med Chem Lett ; 22(24): 7351-6, 2012 Dec 15.
Article in English | MEDLINE | ID: mdl-23142614

ABSTRACT

We have synthesized and evaluated a series of novel HCV NS3 protease inhibitors with various P4 capping groups, which include urea, carbamate, methoxy-carboxamide, cyclic carbamate and amide, pyruvic amide, oxamate, oxalamide and cyanoguanidine. Most of these compounds are remarkably potent, exhibiting single-digit to sub-nanomolar activity in the enzyme assay and cell-based replicon assay. Selected compounds were also evaluated in the protease-inhibitor-resistant mutant transient replicon assay, and they were found to show quite different potency profiles against a panel of HCV protease-inhibitor-resistant mutants.


Subject(s)
Antiviral Agents/chemical synthesis , Antiviral Agents/pharmacology , Hepacivirus/drug effects , Serine Proteinase Inhibitors/chemical synthesis , Serine Proteinase Inhibitors/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , Amides/chemistry , Animals , Antiviral Agents/chemistry , Carbamates/chemistry , Dose-Response Relationship, Drug , Drug Resistance, Viral/genetics , Guanidines/chemistry , Hepacivirus/enzymology , Hepacivirus/genetics , Microbial Sensitivity Tests , Molecular Structure , Oxamic Acid/chemistry , Rats , Serine Proteinase Inhibitors/chemistry , Structure-Activity Relationship , Urea/chemistry , Viral Nonstructural Proteins/metabolism
13.
Curr Opin Infect Dis ; 24(6): 586-92, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22001943

ABSTRACT

PURPOSE OF REVIEW: Boron-based drugs represent a new class of molecules that have been found to exhibit attractive properties and activities against a number of protozoans causative of neglected tropical diseases. RECENT FINDINGS: This review highlights recent advances in discovery of potential treatments for human African trypanosomiasis, malaria and Chagas disease from a class of boron-containing drugs, the benzoxaboroles. SUMMARY: Research at several biotechnology companies, sponsored by product development partners (PDPs), has been successful in identifying a novel class of boron-based drugs, the benzoxaboroles, as potential treatments for neglected tropical diseases. This work was based, in part, on the earlier observation of antifungal, antibacterial and anti-inflammatory activities of the benzoxaboroles. The unique properties of boron, namely its ability to reversibly interact with biochemical targets through an empty p-orbital, are important to the success of these new drug candidates. Physicochemical and pharmacokinetic properties of the boron-based compounds are consistent with features required for oral absorption, metabolic stability and low toxicity - all important for progression of this class to clinical trials.


Subject(s)
Antiprotozoal Agents/therapeutic use , Boron Compounds/therapeutic use , Chagas Disease/drug therapy , Malaria/drug therapy , Trypanosomiasis, African/drug therapy , Antimalarials/therapeutic use , Humans
14.
Bioorg Med Chem Lett ; 21(8): 2533-6, 2011 Apr 15.
Article in English | MEDLINE | ID: mdl-21392987

ABSTRACT

A new class of benzoxaborole ß-lactamase inhibitors were designed and synthesized. 6-Aryloxy benzoxaborole 22 inhibited AmpC P99 and CMY-2 with K(i) values in the low nanomolar range. Compound 22 restored antibacterial activity of ceftazidime against Enterobacter cloacae P99 expressing AmpC, a class C ß-lactamase enzyme. The SAR around the arylbenzoxaboroles, which included the influence of linker and substitutions was also established.


Subject(s)
Anti-Bacterial Agents/chemical synthesis , Benzoxazoles/chemistry , Boron Compounds/chemistry , Enzyme Inhibitors/chemical synthesis , Pyrazines/chemical synthesis , beta-Lactamase Inhibitors , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Boron Compounds/chemical synthesis , Boron Compounds/pharmacology , Enterobacter cloacae/drug effects , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Microbial Sensitivity Tests , Pyrazines/chemistry , Pyrazines/pharmacology , Structure-Activity Relationship , beta-Lactamases/metabolism
15.
Bioorg Med Chem Lett ; 21(2): 644-51, 2011 Jan 15.
Article in English | MEDLINE | ID: mdl-21195617

ABSTRACT

A series of boron-containing benzoxaborole compounds was designed and synthesized for a structure-activity relationship investigation surrounding 7-(HOOCCH(2)CH(2))-1,3-dihydro-1-hydroxy-2,1-benzoxaborole (1) with the goal of discovering a new antimalarial treatment. Compound 1 demonstrates the best potency (IC(50)=26nM) against Plasmodium falciparum and has good drug-like properties, with low molecular weight (206.00), low ClogP (0.86) and high water solubility (750µg/mL at pH 7).


Subject(s)
Antimalarials/chemistry , Antimalarials/pharmacology , Boron Compounds/chemistry , Boron Compounds/pharmacology , Malaria, Falciparum/drug therapy , Plasmodium falciparum/drug effects , Antimalarials/chemical synthesis , Boron Compounds/chemical synthesis , Cell Line , Cell Survival/drug effects , Humans , Parasitic Sensitivity Tests , Structure-Activity Relationship
16.
Bioorg Med Chem Lett ; 21(7): 2048-54, 2011 Apr 01.
Article in English | MEDLINE | ID: mdl-21353550

ABSTRACT

We have synthesized and evaluated a new series of acyclic P4-benzoxaborole-based HCV NS3 protease inhibitors. Structure-activity relationships were investigated, leading to the identification of compounds 5g and 17 with low nanomolar potency in the enzymatic and cell-based replicon assay. The linker-truncated compound 5j was found to exhibit improved absorption and oral bioavailability in rats, suggesting that further reduction of molecular weight and polar surface area could result in improved drug-like properties of this novel series.


Subject(s)
Protease Inhibitors/chemical synthesis , Protease Inhibitors/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , Administration, Oral , Animals , Biological Availability , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacokinetics , Rats , Structure-Activity Relationship
17.
Bioorg Med Chem Lett ; 20(7): 2270-4, 2010 Apr 01.
Article in English | MEDLINE | ID: mdl-20188549

ABSTRACT

PDE4 inhibitors are a validated approach as anti-inflammatory agents but are limited by systemic side effects including emesis. We report a soft-drug strategy incorporating a carboxylic ester group into boron-containing PDE4 inhibitors leading to the discovery of a series of benzoxaborole compounds with good potency (for example IC(50)=47 nM of compound 2) and low emetic activity. These compounds are intended for dermatological use further limiting possible systemic side effects.


Subject(s)
Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Boron/chemistry , Boron/pharmacology , Cyclic Nucleotide Phosphodiesterases, Type 4/metabolism , Phosphodiesterase 4 Inhibitors , Animals , Anti-Inflammatory Agents/blood , Anti-Inflammatory Agents/therapeutic use , Boron/blood , Boron/therapeutic use , Ear/pathology , Edema/drug therapy , Humans , Mice
18.
Bioorg Med Chem Lett ; 20(24): 7493-7, 2010 Dec 15.
Article in English | MEDLINE | ID: mdl-21041080

ABSTRACT

HCV NS3/4A serine protease is essential for the replication of the HCV virus and has been a clinically validated target. A series of HCV NS3/4A protease inhibitors containing a novel acylsulfamoyl benzoxaborole moiety at the P1' region was synthesized and evaluated. The resulting P1-P3 and P2-P4 macrocyclic inhibitors exhibited sub-nanomolar potency in the enzymatic assay and low nanomolar activity in the cell-based replicon assay. The in vivo PK evaluations of selected compounds are also described.


Subject(s)
Boron Compounds/chemistry , Hepacivirus/enzymology , Protease Inhibitors/chemical synthesis , Viral Nonstructural Proteins/antagonists & inhibitors , Viral Nonstructural Proteins/metabolism , Animals , Boron Compounds/chemical synthesis , Boron Compounds/pharmacokinetics , Catalytic Domain , Hepacivirus/drug effects , Male , Models, Molecular , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacokinetics , Rats , Rats, Sprague-Dawley , Virus Replication/drug effects
19.
Bioorg Med Chem Lett ; 20(24): 7317-22, 2010 Dec 15.
Article in English | MEDLINE | ID: mdl-21067923

ABSTRACT

We disclose here a series of P4-benzoxaborole-substituted macrocyclic HCV protease inhibitors. These inhibitors are potent against HCV NS3 protease, their anti-HCV replicon potencies are largely impacted by substitutions on benzoxaborole ring system and P2∗ groups. P2∗ 2-thiazole-isoquinoline provides best replicon potency. The in vitro SAR studies and in vivo PK evaluations of selected compounds are described herein.


Subject(s)
Antiviral Agents/chemical synthesis , Hepacivirus/enzymology , Macrocyclic Compounds/chemistry , Protease Inhibitors/chemical synthesis , Viral Nonstructural Proteins/antagonists & inhibitors , Administration, Oral , Animals , Antiviral Agents/chemistry , Antiviral Agents/pharmacokinetics , Isoquinolines/chemistry , Macrocyclic Compounds/chemical synthesis , Macrocyclic Compounds/pharmacokinetics , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacokinetics , Rats , Structure-Activity Relationship , Thiazoles/chemistry , Viral Nonstructural Proteins/metabolism
20.
Bioorg Med Chem Lett ; 20(19): 5695-700, 2010 Oct 01.
Article in English | MEDLINE | ID: mdl-20801653

ABSTRACT

A novel series of P2-P4 macrocyclic HCV NS3/4A protease inhibitors with α-amino cyclic boronates as warheads at the P1 site was designed and synthesized. When compared to their linear analogs, these macrocyclic inhibitors exhibited a remarkable improvement in cell-based replicon activities, with compounds 9a and 9e reaching sub-micromolar potency in replicon assay. The SAR around α-amino cyclic boronates clearly established the influence of ring size, chirality and of the substitution pattern. Furthermore, X-ray structure of the co-crystal of inhibitor 9a and NS3 protease revealed that Ser-139 in the enzyme active site traps boron in the warhead region of 9a, thus establishing its mode of action.


Subject(s)
Boron Compounds/chemistry , Boronic Acids/chemistry , Macrocyclic Compounds/chemistry , Protease Inhibitors/chemistry , Viral Nonstructural Proteins/antagonists & inhibitors , Binding Sites , Boron Compounds/chemical synthesis , Boron Compounds/pharmacology , Catalytic Domain , Crystallography, X-Ray , Hepacivirus/drug effects , Macrocyclic Compounds/chemical synthesis , Macrocyclic Compounds/pharmacology , Protease Inhibitors/chemical synthesis , Protease Inhibitors/pharmacology , Protein Structure, Tertiary , Structure-Activity Relationship , Viral Nonstructural Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL