Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
MRS Bull ; 49(2): 107-114, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38435786

RESUMEN

Abstract: Electronically controllable actuators have shrunk to remarkably small dimensions, thanks to recent advances in materials science. Currently, multiple classes of actuators can operate at the micron scale, be patterned using lithographic techniques, and be driven by complementary metal oxide semiconductor (CMOS)-compatible voltages, enabling new technologies, including digitally controlled micro-cilia, cell-sized origami structures, and autonomous microrobots controlled by onboard semiconductor electronics. This field is poised to grow, as many of these actuator technologies are the firsts of their kind and much of the underlying design space remains unexplored. To help map the current state of the art and set goals for the future, here, we overview existing work and examine how key figures of merit for actuation at the microscale, including force output, response time, power consumption, efficiency, and durability are fundamentally intertwined. In doing so, we find performance limits and tradeoffs for different classes of microactuators based on the coupling mechanism between electrical energy, chemical energy, and mechanical work. These limits both point to future goals for actuator development and signal promising applications for these actuators in sophisticated electronically integrated microrobotic systems.

2.
Micromachines (Basel) ; 15(2)2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38398905

RESUMEN

The micro- and nanoelectromechanical system (MEMS and NEMS) devices based on two-dimensional (2D) materials reveal novel functionalities and higher sensitivity compared to their silicon-base counterparts. Unique properties of 2D materials boost the demand for 2D material-based nanoelectromechanical devices and sensing. During the last decades, using suspended 2D membranes integrated with MEMS and NEMS emerged high-performance sensitivities in mass and gas sensors, accelerometers, pressure sensors, and microphones. Actively sensing minute changes in the surrounding environment is provided by means of MEMS/NEMS sensors, such as sensing in passive modes of small changes in momentum, temperature, and strain. In this review, we discuss the materials preparation methods, electronic, optical, and mechanical properties of 2D materials used in NEMS and MEMS devices, fabrication routes besides device operation principles.

3.
Nano Lett ; 24(4): 1316-1323, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38227973

RESUMEN

Color centers (CCs) in nanostructured diamond are promising for optically linked quantum technologies. Scaling to useful applications motivates architectures meeting the following criteria: C1 individual optical addressing of spin qubits; C2 frequency tuning of spin-dependent optical transitions; C3 coherent spin control; C4 active photon routing; C5 scalable manufacturability; and C6 low on-chip power dissipation for cryogenic operations. Here, we introduce an architecture that simultaneously achieves C1-C6. We realize piezoelectric strain control of diamond waveguide-coupled tin vacancy centers with ultralow power dissipation necessary. The DC response of our device allows emitter transition tuning by over 20 GHz, combined with low-power AC control. We show acoustic spin resonance of integrated tin vacancy spins and estimate single-phonon coupling rates over 1 kHz in the resolved sideband regime. Combined with high-speed optical routing, our work opens a path to scalable single-qubit control with optically mediated entangling gates.

4.
Micromachines (Basel) ; 14(11)2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-38004960

RESUMEN

Arrays of coupled nanoelectromechanical resonators are a promising foundation for implementing large-scale network applications, such as mechanical-based information processing and computing, but their practical realization remains an outstanding challenge. In this work, we demonstrate a scalable platform of suspended graphene resonators, such that neighboring resonators are persistently coupled mechanically. We provide evidence of strong coupling between neighboring resonators using two different tuning methods. Additionally, we provide evidence of inter-resonator coupling of higher-order modes, demonstrating the rich dynamics that can be accessed with this platform. Our results establish this platform as a viable option for realizing large-scale programmable networks, enabling applications such as phononic circuits, tunable waveguides, and reconfigurable metamaterials.

5.
ACS Nano ; 17(21): 21044-21055, 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37903505

RESUMEN

Open nanofluidic systems, where liquids flow along the outer surface of nanoscale structures, provide otherwise unfeasible capabilities for extremely miniaturized liquid handling applications. A critical step toward fully functional applications is to obtain quantitative mass flow control. We demonstrate the application of nanomechanical sensing for this purpose by integrating voltage-driven liquid flow along nanowire open channels with mass detection based on flexural resonators. This approach is validated by assembling the nanowires with microcantilever resonators, enabling high-precision control of larger flows, and by using the nanowires as resonators themselves, allowing extremely small liquid volume handling. Both implementations are demonstrated by characterizing voltage-driven flow of ionic liquids along the surface of the nanowires. We find a voltage range where mass flow rate follows a nonlinear monotonic increase, establishing a steady flow regime for which we show mass flow control at rates from below 1 ag/s to above 100 fg/s and precise liquid handling down to the zeptoliter scale. The observed behavior of mass flow rate is consistent with a voltage-induced transition from static wetting to dynamic spreading as the mechanism underlying liquid transport along the nanowires.

6.
Nano Lett ; 23(18): 8553-8559, 2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37681677

RESUMEN

Weighing particles above the megadalton mass range has been a persistent challenge in commercial mass spectrometry. Recently, nanoelectromechanical systems-based mass spectrometry (NEMS-MS) has shown remarkable performance in this mass range, especially with the advance of performing mass spectrometry under entirely atmospheric conditions. This advance reduces the overall complexity and cost while increasing the limit of detection. However, this technique required the tracking of two mechanical modes and the accurate knowledge of mode shapes that may deviate from their ideal values, especially due to air damping. Here, we used a NEMS architecture with a central platform, which enables the calculation of mass by single-mode measurements. Experiments were conducted using polystyrene and gold nanoparticles to demonstrate the successful acquisition of mass spectra using a single mode with an improved areal capture efficiency. This advance represents a step forward in NEMS-MS, bringing it closer to becoming a practical application for the mass sensing of nanoparticles.

7.
Nano Lett ; 23(12): 5588-5594, 2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37306317

RESUMEN

Nanoelectromechanical devices have been used widely in many applications across photonics, electronics, and acoustics. Their incorporation into metasurface systems could be beneficial in designing new types of active photonic devices. Here, we propose a design of active metasurfaces using a nanoelectromechanical system (NEMS) composed of silicon bars which operates under CMOS-level voltage and achieves phase modulation with wavelength-scale pixel pitch. By introducing a perturbation to the slot mode propagating between the silicon bars, the device operates in a high-Q regime, making the optical mode highly sensitive to mechanical movement. An over 12 dB reflection modulation is observed by full-wave simulation, and over 10% is achieved in the proof-of-concept experiment under CMOS-level voltage. We also simulate a device with 1.8π phase response using a bottom gold mirror. Based on this device, a 3-pixel optical beam deflector is shown to have 75% diffraction efficiency.

8.
Nano Lett ; 23(10): 4344-4350, 2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37167540

RESUMEN

One of the challenges of nanoelectromechanical systems (NEMS) is the effective transduction of the tiny resonators. Vertical structures, such as nanomechanical pillar resonators, which are exploited in optomechanics, acoustic metamaterials, and nanomechanical sensing, are particularly challenging to transduce. Existing electromechanical transduction methods are ill-suited as they put constraints on the pillars' material and do not enable a transduction of freestanding pillars. Here, we present an electromechanical transduction method for single nanomechanical pillar resonators based on surface acoustic waves (SAWs). We demonstrate the transduction of freestanding nanomechanical platinum-carbon pillars in the first-order bending and compression mode. Since the principle of the transduction method is based on resonant scattering of a SAW by a nanomechanical resonator, our transduction method is independent of the pillar's material and not limited to pillar-shaped geometries. It represents a general method to transduce vertical mechanical resonators with nanoscale lateral dimensions.

9.
Small ; 19(5): e2205327, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36461691

RESUMEN

This work reports experimental demonstrations of reversible crystalline phase transition in ultrathin molybdenum ditelluride (MoTe2 ) controlled by thermal and mechanical mechanisms on the van der Waals (vdW) nanoelectromechanical systems (NEMS) platform, with hexagonal boron nitride encapsulated MoTe2 structure residing on top of graphene layer. Benefiting from very efficient electrothermal heating and straining effects in the suspended vdW heterostructures, MoTe2 phase transition is triggered by rising temperature and strain level. Raman spectroscopy monitors the MoTe2 crystalline phase signatures in situ and clearly records reversible phase transitions between hexagonal 2H (semiconducting) and monoclinic 1T' (metallic) phases. Combined with Raman thermometry, precisely measured nanomechanical resonances of the vdW devices enable the determination and monitoring of the strain variations as temperature is being regulated by electrothermal control. These results not only deepen the understanding of MoTe2 phase transition, but also demonstrate a novel platform for engineering MoTe2 phase transition and multiphysical devices.

10.
Biosensors (Basel) ; 12(11)2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36354461

RESUMEN

The interest in biodegradable pressure sensors in the biomedical field is growing because of their temporary existence in wearable and implantable applications without any biocompatibility issues. In contrast to the limited sensing performance and biocompatibility of initially developed biodegradable pressure sensors, device performances and functionalities have drastically improved owing to the recent developments in micro-/nano-technologies including device structures and materials. Thus, there is greater possibility of their use in diagnosis and healthcare applications. This review article summarizes the recent advances in micro-/nano-structured biodegradable pressure sensor devices. In particular, we focus on the considerable improvement in performance and functionality at the device-level that has been achieved by adapting the geometrical design parameters in the micro- and nano-meter range. First, the material choices and sensing mechanisms available for fabricating micro-/nano-structured biodegradable pressure sensor devices are discussed. Then, this is followed by a historical development in the biodegradable pressure sensors. In particular, we highlight not only the fabrication methods and performances of the sensor device, but also their biocompatibility. Finally, we intoduce the recent examples of the micro/nano-structured biodegradable pressure sensor for biomedical applications.


Asunto(s)
Técnicas Biosensibles , Prótesis e Implantes
11.
Nanomaterials (Basel) ; 12(22)2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36432311

RESUMEN

bioNEMS/MEMS has emerged as an innovative technology for the miniaturisation of biomedical devices with high precision and rapid processing since its first R&D breakthrough in the 1980s. To date, several organic including food waste derived nanomaterials and inorganic nanomaterials (e.g., carbon nanotubes, graphene, silica, gold, and magnetic nanoparticles) have steered the development of high-throughput and sensitive bioNEMS/MEMS-based biosensors, actuator systems, drug delivery systems and implantable/wearable sensors with desirable biomedical properties. Turning food waste into valuable nanomaterials is potential groundbreaking research in this growing field of bioMEMS/NEMS. This review aspires to communicate recent progress in organic and inorganic nanomaterials based bioNEMS/MEMS for biomedical applications, comprehensively discussing nanomaterials criteria and their prospects as ideal tools for biomedical devices. We discuss clinical applications for diagnostic, monitoring, and therapeutic applications as well as the technological potential for cell manipulation (i.e., sorting, separation, and patterning technology). In addition, current in vitro and in vivo assessments of promising nanomaterials-based biomedical devices will be discussed in this review. Finally, this review also looked at the most recent state-of-the-art knowledge on Internet of Things (IoT) applications such as nanosensors, nanoantennas, nanoprocessors, and nanobattery.

12.
ACS Nano ; 16(10): 15545-15585, 2022 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-36054880

RESUMEN

The quest for realizing and manipulating ever smaller man-made movable structures and dynamical machines has spurred tremendous endeavors, led to important discoveries, and inspired researchers to venture to previously unexplored grounds. Scientific feats and technological milestones of miniaturization of mechanical structures have been widely accomplished by advances in machining and sculpturing ever shrinking features out of bulk materials such as silicon. With the flourishing multidisciplinary field of low-dimensional nanomaterials, including one-dimensional (1D) nanowires/nanotubes and two-dimensional (2D) atomic layers such as graphene/phosphorene, growing interests and sustained effort have been devoted to creating mechanical devices toward the ultimate limit of miniaturization─genuinely down to the molecular or even atomic scale. These ultrasmall movable structures, particularly nanomechanical resonators that exploit the vibratory motion in these 1D and 2D nano-to-atomic-scale structures, offer exceptional device-level attributes, such as ultralow mass, ultrawide frequency tuning range, broad dynamic range, and ultralow power consumption, thus holding strong promises for both fundamental studies and engineering applications. In this Review, we offer a comprehensive overview and summary of this vibrant field, present the state-of-the-art devices and evaluate their specifications and performance, outline important achievements, and postulate future directions for studying these miniscule yet intriguing molecular-scale machines.

13.
Nano Lett ; 22(14): 5780-5787, 2022 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-35792575

RESUMEN

Resonant nanoelectromechanical systems (NEMS) enabled by two-dimensional (2D) semiconductors have been actively explored and engineered for making ultrascaled transducers toward applications in ultralow-power signal processing, communication, and sensing. Although the transduction of miniscule resonant motions has been achieved by low-noise optical or electronic techniques, direct probing of strain in vibrating 2D semiconductor membranes and the interplay between the spectroscopic and mechanical properties are still largely unexplored. Here, we experimentally demonstrate dynamical phonon softening in atomically thin molybdenum disulfide (MoS2) NEMS resonators by directly coupling Raman spectroscopy with optical interferometry resonance motion detection. In single-layer, bilayer, and trilayer (1L to 3L) MoS2 circular membrane NEMS resonators, we show that high-amplitude nonlinear resonances can enhance the Raman signal amplitude, as well as introduce Raman modes softening up to 0.8 cm-1. These results shall pave the way for engineering the coupling and control between collective mechanical vibrations and Raman modes of the constituent crystals in 2D transducers.

14.
ACS Nano ; 16(3): 3821-3833, 2022 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-35785967

RESUMEN

Mass spectrometry of intact nanoparticles and viruses can serve as a potent characterization tool for material science and biophysics. Inaccessible by widespread commercial techniques, the mass of single nanoparticles and viruses (>10MDa) can be readily measured by nanoelectromechanical systems (NEMS)-based mass spectrometry, where charged and isolated analyte particles are generated by electrospray ionization (ESI) in air and transported onto the NEMS resonator for capture and detection. However, the applicability of NEMS as a practical solution is hindered by their miniscule surface area, which results in poor limit-of-detection and low capture efficiency values. Another hindrance is the necessity to house the NEMS inside complex vacuum systems, which is required in part to focus analytes toward the miniscule detection surface of the NEMS. Here, we overcome both limitations by integrating an ion lens onto the NEMS chip. The ion lens is composed of a polymer layer, which charges up by receiving part of the ions incoming from the ESI tip and consequently starts to focus the analytes toward an open window aligned with the active area of the NEMS electrostatically. With this integrated system, we have detected the mass of gold and polystyrene nanoparticles under ambient conditions and with two orders-of-magnitude improvement in capture efficiency compared to the state-of-the-art. We then applied this technology to obtain the mass spectrum of SARS-CoV-2 and BoHV-1 virions. With the increase in analytical throughput, the simplicity of the overall setup, and the operation capability under ambient conditions, the technique demonstrates that NEMS mass spectrometry can be deployed for mass detection of engineered nanoparticles and biological samples efficiently.


Asunto(s)
COVID-19 , Nanopartículas , Virus , Presión Atmosférica , Humanos , Espectrometría de Masas/métodos , SARS-CoV-2
15.
Nano Lett ; 22(15): 6048-6054, 2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-35904442

RESUMEN

Nonlinearities are inherent to the dynamics of two-dimensional materials. Phenomena-like intermodal coupling already arise at amplitudes of only a few nanometers, and a range of unexplored effects still awaits to be harnessed. Here, we demonstrate a route for generating mechanical frequency combs in graphene resonators undergoing symmetry-breaking forces. We use electrostatic force to break the membrane's out-of-plane symmetry and tune its resonance frequency toward a one-to-two internal resonance, thus achieving strong coupling between two of its mechanical modes. When increasing the drive level, we observe splitting of the fundamental resonance peak, followed by the emergence of a frequency comb regime. We attribute the observed physics to a nonsymmetric restoring potential and show that the frequency comb regime is mediated by Neimark bifurcation of the periodic solution. These results demonstrate that mechanical frequency combs and chaotic dynamics in 2D material resonators can emerge near internal resonances due to symmetry-breaking.

16.
Small Methods ; 5(9): e2100542, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34928053

RESUMEN

Amplification-free genome analysis can revolutionize biology and medicine by uncovering genetic variations among individuals. Here, the authors report on a 3D-integrated nanopore for electrolysis to in situ detection of single-molecule DNA in a cell by ionic current measurements. It consists of a SiO2 multipore sheet and a SiNx nanopore membrane stacked vertically on a Si wafer. Single cell lysis is demonstrated by 106  V m-1 -level electrostatic field focused at the multinanopore. The intracellular molecules are then directly detected as they move through a sensing zone, wherein the authors find telegraphic current signatures reflecting folding degrees of freedom of the millimeter-long polynucleotides threaded through the SiNx nanopore. The present device concept may enable on-chip single-molecule sequencing to multi-omics analyses at a single-cell level.


Asunto(s)
ADN/análisis , Imagen Individual de Molécula/instrumentación , Técnicas Biosensibles , Humanos , Nanoporos , Dióxido de Silicio/química , Imagen Individual de Molécula/métodos , Electricidad Estática
17.
Nanomaterials (Basel) ; 11(11)2021 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-34835676

RESUMEN

Recent studies reveal that carbon nanostructures show anomalous piezoelectric properties when the central symmetry of their structure is violated. Particular focus is given to carbon nanotubes (CNTs) with initial significant curvature of the graphene sheet surface, which leads to an asymmetric redistribution of the electron density. This paper presents the results of studies on the piezoelectric properties of aligned multi-walled CNTs. An original technique for evaluating the effective piezoelectric coefficient of CNTs is presented. For the first time, in this study, we investigate the influence of the growth temperature and thickness of the catalytic Ni layer on the value of the piezoelectric coefficient of CNTs. We establish the relationship between the effective piezoelectric coefficient of CNTs and their defectiveness and diameter, which determines the curvature of the graphene sheet surface. The calculated values of the effective piezoelectric coefficient of CNTs are shown to be between 0.019 and 0.413 C/m2, depending on the degree of their defectiveness and diameter.

18.
Nano Lett ; 21(18): 7617-7624, 2021 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-34461013

RESUMEN

The resonance frequency of membranes depends on the gas pressure due to the squeeze-film effect, induced by the compression of a thin gas film that is trapped underneath the resonator by the high-frequency motion. This effect is particularly large in low-mass graphene membranes, which makes them promising candidates for pressure-sensing applications. Here, we study the squeeze-film effect in single-layer graphene resonators and find that their resonance frequency is lower than expected from models assuming ideal compression. To understand this deviation, we perform Boltzmann and continuum finite-element simulations and propose an improved model that includes the effects of gas leakage and can account for the observed pressure dependence of the resonance frequency. Thus, this work provides further understanding of the squeeze-film effect and provides further directions into optimizing the design of squeeze-film pressure sensors from 2D materials.

19.
Nano Lett ; 21(15): 6617-6624, 2021 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-34288677

RESUMEN

Dynamic range quantifies the linear operation regime available in nanomechanical resonators. Nonlinearities dominate the response of flexural beams in the limit of very high aspect ratio and very small diameter, which leads to expectation of low dynamic range for nanowire resonators in general. However, the highest achievable dynamic range for nanowire resonators with practical dimensions remains to be determined. We report dynamic range measurements on singly clamped silicon nanowire resonators reaching remarkably high values of up to 90 dB obtained with a simple harmonic actuation scheme. We explain these measurements by a comprehensive theoretical examination of dynamic range in singly clamped flexural beams including the effect of tapering, a usual feature of semiconductor nanowires. Our analysis reveals the nanowire characteristics required for broad linear operation, and given the relationship between dynamic range and mass sensing performance, it also enables analytical determination of mass detection limits, reaching atomic-scale resolution for feasible nanowires.

20.
Nano Lett ; 21(7): 2975-2981, 2021 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-33755479

RESUMEN

Advances in nanofabrication techniques have made it feasible to observe damping phenomena beyond the linear regime in nanomechanical systems. In this work, we report cubic nonlinear damping in palladium nanomechanical resonators. Nanoscale palladium beams exposed to a H2 atmosphere become softer and display enhanced Duffing nonlinearity as well as nonlinear damping at ultralow temperatures. The damping is highest at the lowest temperatures of ∼110 mK and decreases when warmed up to ∼1 K. We experimentally demonstrate for the first time temperature-dependent nonlinear damping in a nanomechanical system below 1 K. This is consistent with a predicted two-phonon-mediated nonlinear Akhiezer scenario with a ballistic phonon mean free path comparable to the beam thickness. This opens up new possibilities to engineer nonlinear phenomena at low temperatures.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA