Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Stem Cells ; 39(9): 1166-1177, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33837584

RESUMEN

The expansion of pluripotent stem cells (PSCs) as aggregates in stirred suspension bioreactors is garnering attention as an alternative to adherent culture. However, the hydrodynamic environment in the bioreactor can modulate PSC behavior, pluripotency and differentiation potential in ways that need to be well understood. In this study, we investigated how murine embryonic stem cells (mESCs) sense fluid shear stress and modulate a noncanonical Wnt signaling response to promote pluripotency. mESCs showed higher expression of pluripotency marker genes, Oct4, Sox2, and Nanog in the absence of leukemia inhibitory factor (LIF) in stirred suspension bioreactors compared to adherent culture, a phenomenon we have termed mechanopluripotency. In bioreactor culture, fluid shear promoted the nuclear translocation of the less well-known pluripotency regulator ß-catenin and concomitant increase of c-Myc expression, an upstream regulator of Oct4, Sox2, and Nanog. We also observed similar ß-catenin nuclear translocation in LIF-free mESCs cultured on E-cadherin substrate under defined fluid shear stress conditions in flow chamber plates. mESCs showed lower shear-induced expression of pluripotency marker genes when ß-catenin was inhibited, suggesting that ß-catenin signaling is crucial to mESC mechanopluripotency. Key to this process is vinculin, which is known to rearrange and associate more strongly with adherens junctions in response to fluid shear. When the vinculin gene is disrupted, we observe that nuclear ß-catenin translocation and mechanopluripotency are abrogated. Our results indicate that mechanotransduction through the adherens junction complex is important for mESC pluripotency maintenance.


Asunto(s)
Mecanotransducción Celular , beta Catenina , Animales , Reactores Biológicos , Diferenciación Celular/genética , Células Madre Embrionarias/metabolismo , Ratones , Células Madre Embrionarias de Ratones/metabolismo , Vinculina/metabolismo , beta Catenina/metabolismo
2.
Int J Mol Sci ; 22(10)2021 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-34069142

RESUMEN

Bone healing is a complex, well-organized process. Multiple factors regulate this process, including growth factors, hormones, cytokines, mechanical stimulation, and aging. One of the most important signaling pathways that affect bone healing is the Notch signaling pathway. It has a significant role in controlling the differentiation of bone mesenchymal stem cells and forming new bone. Interventions to enhance the healing of critical-sized bone defects are of great importance, and stem cell transplantations are eminent candidates for treating such defects. Understanding how Notch signaling impacts pluripotent stem cell differentiation can significantly enhance osteogenesis and improve the overall healing process upon transplantation. In Rancourt's lab, mouse embryonic stem cells (ESC) have been successfully differentiated to the osteogenic cell lineage. This study investigates the role of Notch signaling inhibition in the osteogenic differentiation of mouse embryonic and induced pluripotent stem cells (iPS). Our data showed that Notch inhibition greatly enhanced the differentiation of both mouse embryonic and induced pluripotent stem cells.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Diferenciación Celular/efectos de los fármacos , Osteogénesis/genética , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/efectos de los fármacos , Animales , Huesos/metabolismo , Proteínas de Ciclo Celular/genética , Diferenciación Celular/fisiología , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Dexametasona/farmacología , Diaminas/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/fisiología , Mesodermo/citología , Ratones , Células Madre Embrionarias de Ratones/citología , Células Madre Embrionarias de Ratones/efectos de los fármacos , Osteoblastos/citología , Osteoblastos/efectos de los fármacos , Osteoblastos/fisiología , Osteogénesis/efectos de los fármacos , Células Madre Pluripotentes/metabolismo , Receptores Notch/metabolismo , Tiazoles/farmacología , Factor de Transcripción HES-1/genética , Vitamina D/farmacología
3.
Biotechnol Bioeng ; 117(5): 1316-1328, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31960947

RESUMEN

Embryonic stem cells (ESCs) have almost unlimited proliferation capacity in vitro and can retain the ability to contribute to all cell lineages, making them an ideal platform material for cell-based therapies. ESCs are traditionally cultured in static flasks on a feeder layer of murine embryonic fibroblast cells. Although sufficient to generate cells for research purposes, this approach is impractical to achieve large quantities for clinical applications. In this study, we have developed protocols that address a variety of challenges that currently bottleneck clinical translation of ESCs expanded in stirred suspension bioreactors. We demonstrated that mouse ESCs (mESCs) cryopreserved in the absence of feeder cells could be thawed directly into stirred suspension bioreactors at extremely low inoculation densities (100 cells/ml). These cells sustained proliferative capacity through multiple passages and various reactor sizes and geometries, producing clinically relevant numbers (109 cells) and maintaining pluripotency phenotypic and functional properties. Passages were completed in stirred suspension bioreactors of increasing scale, under defined batch conditions which greatly improved resource efficiency. Output mESCs were analyzed for pluripotency marker expression (SSEA-1, SOX-2, and Nanog) through flow cytometry, and spontaneous differentiation and teratoma analysis was used to demonstrate functional maintenance of pluripotency.


Asunto(s)
Reactores Biológicos , Técnicas de Cultivo de Célula/métodos , Criopreservación , Células Madre Embrionarias/citología , Animales , Recuento de Células , Células Cultivadas , Ratones , Ratones SCID
4.
Nat Methods ; 9(5): 465-6, 2012 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-22484846

RESUMEN

Induced pluripotent stem cells (iPSCs) are typically derived in adherent culture. Here we report fast and efficient derivation of mouse iPSCs in stirred suspension bioreactors, with and without the use of c-Myc. Suspension-reprogrammed cells expressed pluripotency markers, showed multilineage differentiation in vitro and in vivo, and contributed to the germline in chimeric mice. Suspension reprogramming has the potential to accelerate and standardize iPSC research.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Células Madre Pluripotentes Inducidas/citología , Animales , Reactores Biológicos , Técnicas de Cultivo de Célula/instrumentación , Diferenciación Celular/fisiología , Quimera/genética , Citometría de Flujo , Inmunofenotipificación/métodos , Células Madre Pluripotentes Inducidas/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Proteínas Proto-Oncogénicas c-myc/metabolismo , Transfección/métodos
5.
Bioessays ; 35(7): 632-8, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23653435

RESUMEN

Embryonic stem cells (ESCs) are now classified into two types of pluripotency: "naïve" and "primed" based upon their differing characteristics. Conventional human ESCs have much more in common with mouse epiblast stem cells and are now deemed to be primed. Naïve human ESCs that resemble mouse ESCs have recently been generated from their primed counterpart by cellular reprogramming. Isolation of naïve hESCs from human embryos has proven to be difficult. Is the inability to capture naïve hESCs the result of suboptimal derivation conditions or because they are so transient they cannot be "captured" in vitro? Prevailing evidence surrounding this issue are inconclusive and require additional human embryo research. However, negative public opinion regarding human embryo research, may make this an uphill battle. The solution may come from cellular reprogramming.


Asunto(s)
Células Madre Embrionarias/citología , Animales , Diferenciación Celular , Modelos Animales de Enfermedad , Fibroblastos/citología , Fibroblastos/metabolismo , Expresión Génica , Estratos Germinativos/citología , Glucógeno Sintasa Quinasa 3/genética , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Humanos , Ratones , Células Madre Pluripotentes/citología , Transducción de Señal , Inactivación del Cromosoma X
6.
J Cell Sci ; 125(Pt 22): 5564-77, 2012 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-22946055

RESUMEN

Nitric oxide (NO) has been shown to play a crucial role in bone formation in vivo. We sought to determine the temporal effect of NO on murine embryonic stem cells (ESCs) under culture conditions that promote osteogenesis. Expression profiles of NO pathway members and osteoblast-specific markers were analyzed using appropriate assays. We found that NO was supportive of osteogenesis specifically during an early phase of in vitro development (days 3-5). Furthermore, ESCs stably overexpressing the inducible NO synthase showed accelerated and enhanced osteogenesis in vitro and in bone explant cultures. To determine the role of NO in early lineage commitment, a stage in ESC differentiation equivalent to primitive streak formation in vivo, ESCs were transfected with a T-brachyury-GFP reporter. Expression levels of T-brachyury and one of its upstream regulators, ß-catenin, the major effector in the canonical Wnt pathway, were responsive to NO levels in differentiating primitive streak-like cells. Our results indicate that NO may be involved in early differentiation through regulation of ß-catenin and T-brachyury, controlling the specification of primitive-streak-like cells, which may continue through differentiation to later become osteoblasts.


Asunto(s)
Diferenciación Celular , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Óxido Nítrico/metabolismo , Osteogénesis , Línea Primitiva/embriología , beta Catenina/metabolismo , Animales , Recuento de Células , Diferenciación Celular/efectos de los fármacos , GMP Cíclico/metabolismo , Células Madre Embrionarias/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Proteínas Fetales/metabolismo , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Humanos , Cloruro de Litio/farmacología , Ratones , Ratones Endogámicos C57BL , Minerales/metabolismo , Óxido Nítrico Sintasa/antagonistas & inhibidores , Óxido Nítrico Sintasa/metabolismo , Osteogénesis/efectos de los fármacos , Fosfatidilserinas/metabolismo , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/efectos de los fármacos , Células Madre Pluripotentes/metabolismo , Línea Primitiva/citología , Línea Primitiva/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal/efectos de los fármacos , Proteínas de Dominio T Box/metabolismo , Factores de Tiempo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética
7.
Commun Biol ; 7(1): 190, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38365890

RESUMEN

Enzymatic dissociation of human pluripotent stem cells (hPSCs) into single cells during routine passage leads to massive cell death. Although the Rho-associated protein kinase inhibitor, Y-27632 can enhance hPSC survival and proliferation at high seeding density, dissociated single cells undergo apoptosis at clonal density. This presents a major hurdle when deriving genetically modified hPSC lines since transfection and genome editing efficiencies are not satisfactory. As a result, colonies tend to contain heterogeneous mixtures of both modified and unmodified cells, making it difficult to isolate the desired clone buried within the colony. In this study, we report improved clonal expansion of hPSCs using a retinoic acid analogue, TTNPB. When combined with Y-27632, TTNPB synergistically increased hPSC cloning efficiency by more than 2 orders of magnitude (0.2% to 20%), whereas TTNPB itself increased more than double cell number expansion compared to Y-27632. Furthermore, TTNPB-treated cells showed two times higher aggregate formation and cell proliferation compared to Y-27632 in suspension culture. TTNPB-treated cells displayed a normal karyotype, pluripotency and were able to stochastically differentiate into all three germ layers both in vitro and in vivo. TTNBP acts, in part, by promoting cellular adhesion and self-renewal through the upregulation of Claudin 2 and HoxA1. By promoting clonal expansion, TTNPB provides a new approach for isolating and expanding pure hPSCs for future cell therapy applications.


Asunto(s)
Benzoatos , Células Madre Pluripotentes , Piridinas , Humanos , Amidas/farmacología , Claudinas/metabolismo , Células Madre Pluripotentes/efectos de los fármacos , Retinoides/farmacología , Retinoides/metabolismo
8.
Stem Cell Res Ther ; 15(1): 232, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39075528

RESUMEN

BACKGROUND: While pluripotent stem cell (PSC) therapies move toward clinical and commercial applications at a rapid rate, manufacturing reproducibility and robustness are notable bottlenecks in regulatory approval. Therapeutic applications of PSCs require large cell quantities to be generated under highly robust, well-defined, and economically viable conditions. Small-scale and short-term process optimization, however, is often performed in a linear fashion that does not account for time needed to verify the bioprocess protocols and analysis methods used. Design of a reproducible and robust bioprocess should be dynamic and include a continuous effort to understand how the process will respond over time and to different stresses before transitioning into large-scale production where stresses will be amplified. METHODS: This study utilizes a baseline protocol, developed for the short-term culture of PSC aggregates in Vertical-Wheel® bioreactors, to evaluate key process attributes through long-term (serial passage) suspension culture. This was done to access overall process robustness when performed with various commercially available media and cell lines. Process output variables including growth kinetics, aggregate morphology, harvest efficiency, genomic stability, and functional pluripotency were assessed through short and long-term culture. RESULTS: The robust nature of the expansion protocol was demonstrated over a six-day culture period where spherical aggregate formation and expansion were observed with high-fold expansions for all five commercial media tested. Profound differences in cell growth and quality were revealed only through long-term serial expansion and in-vessel dissociation operations. Some commercial media formulations tested demonstrated maintenance of cell growth rates, aggregate morphology, and high harvest recovery efficiencies through three bioreactor serial passages using multiple PSC lines. Exceptional bioprocess robustness was even demonstrated with sustained growth and quality maintenance over 10 serial bioreactor passages. However, some commercial media tested proved less equipped for serial passage cultures in bioreactors as cultures led to cell lysis during dissociation, reduction in growth rates, and a loss of aggregate morphology. CONCLUSIONS: This study demonstrates the importance of systematic selection and testing of bioprocess input variables, with multiple bioprocess output variables through serial passages to create a truly reproducible and robust protocol for clinical and commercial PSC production using scalable bioreactor systems.


Asunto(s)
Reactores Biológicos , Técnicas de Cultivo de Célula , Medios de Cultivo , Células Madre Pluripotentes Inducidas , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Técnicas de Cultivo de Célula/métodos , Medios de Cultivo/química , Medios de Cultivo/farmacología , Proliferación Celular , Diferenciación Celular , Línea Celular
9.
Biochem Cell Biol ; 91(6): 487-97, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24219291

RESUMEN

Implantation serine proteinase 2 (ISP2), a S1 family serine proteinase, is known for its role in the critical processes of embryo hatching and implantation in the mouse uterus. Native implantation serine proteinases (ISPs) are co-expressed and co-exist as heterodimers in uterine and blastocyst tissues. The ISP1-ISP2 enzyme complex shows trypsin-like substrate specificity. In contrast, we found that ISP2, isolated as a 34 kDa monomer from a Pichia pastoris expression system, exhibited a mixed serine proteolytic substrate specificity, as determined by a phage display peptide cleavage approach and verified by the in vitro cleavage of synthetic peptides. Based upon the peptide sequence substrate selectivity, a database search identified many potential ISP2 targets of physiological relevance, including the proteinase activated receptor 2 (PAR2). The in vitro cleavage studies with PAR2-derived peptides confirmed the mixed substrate specificity of ISP2. Treatment of cell lines expressing proteinase-activated receptors (PARs) 1, 2, and 4 with ISP2 prevented receptor activation by either thrombin (PARs 1 and 4) or trypsin (PAR2). The disarming and silencing of PARs by ISP2 may play a role in successful embryo implantation.


Asunto(s)
Péptidos/metabolismo , Receptor PAR-1/metabolismo , Receptor PAR-2/metabolismo , Serina Endopeptidasas/metabolismo , Transducción de Señal/genética , Secuencia de Aminoácidos , Animales , Implantación del Embrión , Femenino , Expresión Génica , Regulación de la Expresión Génica , Humanos , Ratones , Datos de Secuencia Molecular , Biblioteca de Péptidos , Péptidos/química , Pichia/genética , Pichia/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteolisis , Ratas , Receptor PAR-1/genética , Receptor PAR-2/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Serina Endopeptidasas/genética , Trombina/metabolismo , Tripsina/metabolismo
10.
J Magn Reson Imaging ; 38(1): 231-7, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23125100

RESUMEN

PURPOSE: To determine whether magnetic resonance imaging (MRI) could be used to track changes in skeletal morphology during bone healing using high-resolution micro-computed tomography (µCT) as a standard. We used a mouse model of bone injury to compare µCT with MRI. MATERIALS AND METHODS: Surgery was performed to induce a burr hole fracture in the mouse tibia. A selection of biomaterials was immediately implanted into the fractures. First we optimized the imaging sequences by testing different MRI pulse sequences. Then changes in bone morphology over the course of fracture repair were assessed using in vivo MRI and µCT. Histology was performed to validate the imaging outcomes. RESULTS: The rapid acquisition with relaxation enhancement (RARE) sequence provided sufficient contrast between bone and the surrounding tissues to clearly reveal the fracture. It allowed detection of the fracture clearly 1 and 14 days postsurgery and revealed soft tissue changes that were not clear on µCT. In MRI and µCT the fracture was seen at day 1 and partial healing was detected at day 14. CONCLUSION: The RARE sequence was the most suitable for MRI bone imaging. It enabled the detection of hard and even soft tissue changes. These findings suggest that MRI could be an effective imaging modality for assessing changes in bone morphology and pathobiology.


Asunto(s)
Curación de Fractura/fisiología , Imagen por Resonancia Magnética/métodos , Tibia/patología , Fracturas de la Tibia/diagnóstico , Fracturas de la Tibia/fisiopatología , Tomografía Computarizada por Rayos X/métodos , Animales , Femenino , Ratones , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Tibia/diagnóstico por imagen
11.
Biotechnol Genet Eng Rev ; 29: 24-30, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24568250

RESUMEN

Pluripotent stem cells are of great interest in the field of regenerative medicine. Recent studies have shown that they maintain a glycolytic metabolic status while pluripotent and wholesale changes to mitochondrial and metabolic profile occur during differentiation. This article reviews the process and how this may be exploited in a stirred suspension bioreactor for rapid growth while maintaining pluripotency.


Asunto(s)
Reactores Biológicos , Técnicas de Cultivo de Célula , Mitocondrias/metabolismo , Células Madre Pluripotentes/metabolismo , Diferenciación Celular , Proliferación Celular , Humanos , Células Madre Pluripotentes/citología , Suspensiones
12.
Sci Rep ; 13(1): 9378, 2023 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-37296277

RESUMEN

Promoting bone healing including fracture non-unions are promising targets for bone tissue engineering due to the limited success of current clinical treatment methods. There has been significant research on the use of stem cells with and without biomaterial scaffolds to treat bone fractures due to their promising regenerative capabilities. However, the relative roles of exogenous vs. endogenous stem cells and their overall contribution to in vivo fracture repair is not well understood. The purpose of this study was to determine the interaction between exogenous and endogenous stem cells during bone healing. This study was conducted using a standardized burr-hole bone injury model in a mesenchymal progenitor cell (MPC) lineage-tracing mouse under normal homeostatic and osteoporotic conditions. Burr-hole injuries were treated with a collagen-I biomaterial loaded with and without labelled induced pluripotent stem cells (iPSCs). Using lineage-tracing, the roles of exogenous and endogenous stem cells during bone healing were examined. It was observed that treatment with iPSCs resulted in muted healing compared to untreated controls in intact mice post-injury. When the cell populations were examined histologically, iPSC-treated burr-hole defects presented with a dramatic reduction in endogenous MPCs and cell proliferation throughout the injury site. However, when the ovaries were removed and an osteoporotic-like phenotype induced in the mice, iPSCs treatment resulted in increased bone formation relative to untreated controls. In the absence of iPSCs, endogenous MPCs demonstrated robust proliferative and osteogenic capacity to undertake repair and this behaviour was disrupted in the presence of iPSCs which instead took on an osteoblast fate but with little proliferation. This study clearly demonstrates that exogenously delivered cell populations can impact the normal function of endogenous stem/progenitor populations during the normal healing cascade. These interactions need to be better understood to inform cell and biomaterial therapies to treat fractures.


Asunto(s)
Células Madre Pluripotentes Inducidas , Células Madre Mesenquimatosas , Ratones , Animales , Osteogénesis , Células Madre Mesenquimatosas/fisiología , Materiales Biocompatibles , Ingeniería de Tejidos/métodos , Diferenciación Celular
13.
Bioessays ; 32(9): 791-9, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20652894

RESUMEN

Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) can self-renew indefinitely and contribute to all tissue types of the adult organism. Stem cell-based therapeutic approaches hold enormous promise for the cure of regenerative diseases. Over the last few years, several studies have attempted to decipher the important role of transcription factor networks and epigenetic regulatory signals in the maintenance of ESC pluripotency, but the exact underlying mechanisms have yet to be identified. Among the epigenetic factors, chromatin dynamics and structure have been found to contribute greatly to maintenance of pluripotency and regulation of differentiation in ESCs. These modifications include: covalent histone acetylation and methylation, histone bivalents and chromatin remodeling, and DNA methylation. Studies in ESCs have shown that genes associated with early development are arranged within a bivalent chromatin structure. This is thought to be a "poised yet repressed" situation, which can be activated upon differentiation. The breakthrough of iPSCs has opened a new era in stem cell biology. During reprogramming, the chromatin state of differentiated cells is reset to an embryonic form via a largely unknown mechanism. In this review, the fundamental impact of chromatin dynamic in ESCs as well as its critical role in the generation of iPSCs is discussed.


Asunto(s)
Ensamble y Desensamble de Cromatina , Cromatina/ultraestructura , Células Madre Embrionarias/metabolismo , Epigenómica , Células Madre Pluripotentes Inducidas/fisiología , Acetilación , Animales , Metilación de ADN , Células Madre Embrionarias/citología , Regulación del Desarrollo de la Expresión Génica , Histonas/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Ratones , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción Genética
14.
BMC Cell Biol ; 12: 53, 2011 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-22168552

RESUMEN

BACKGROUND: Embryonic stem cells (ESCs) can proliferate endlessly and are able to differentiate into all cell lineages that make up the adult organism. Under particular in vitro culture conditions, ESCs can be expanded and induced to differentiate into cardiomyocytes in stirred suspension bioreactors (SSBs). However, in using these systems we must be cognizant of the mechanical forces acting upon the cells. The effect of mechanical forces and shear stress on ESC pluripotency and differentiation has yet to be clarified. The purpose of this study was to investigate the impact of the suspension culture environment on ESC pluripotency during cardiomyocyte differentiation. RESULTS: Murine D3-MHC-neo(r) ESCs formed embyroid bodies (EBs) and differentiated into cardiomyocytes over 25 days in static culture and suspension bioreactors. G418 (Geneticin) was used in both systems from day 10 to enrich for cardiomyocytes by eliminating non-resistant, undifferentiated cells. Treatment of EBs with 1 mM ascorbic acid and 0.5% dimethyl sulfoxide from day 3 markedly increased the number of beating EBs, which displayed spontaneous and cadenced contractile beating on day 11 in the bioreactor. Our results showed that the bioreactor differentiated cells displayed the characteristics of fully functional cardiomyocytes. Remarkably, however, our results demonstrated that the bioreactor differentiated ESCs retained their ability to express pluripotency markers, to form ESC-like colonies, and to generate teratomas upon transplantation, whereas the cells differentiated in adherent culture lost these characteristics. CONCLUSIONS: This study demonstrates that although cardiomyocyte differentiation can be achieved in stirred suspension bioreactors, the addition of medium enhancers is not adequate to force complete differentiation as fluid shear forces appear to maintain a subpopulation of cells in a transient pluripotent state. The development of successful ESC differentiation protocols within suspension bioreactors demands a more complete understanding of the impacts of shear forces on the regulation of pluripotency and differentiation in pluripotent stem cells.


Asunto(s)
Reactores Biológicos , Técnicas de Cultivo de Célula/instrumentación , Células Madre Embrionarias/citología , Miocitos Cardíacos/citología , Animales , Diferenciación Celular , Células Cultivadas , Ratones , Ratones SCID , Células Madre Pluripotentes/citología
15.
Bioessays ; 31(3): 336-43, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19260014

RESUMEN

Since their derivation, human embryonic stem (hES) cells have been used for a variety of applications including developmental biology, pathology, chemical biology, genomics, and proteomics. However, their most important potential application is the generation of cells and tissues, which can be used for cell-based therapies. One of the main drawbacks of hES cell culture is that they are particularly sensitive to dissociation, which is required for passaging, expansion, cryopreservation, and other applications. Recently, it has been discovered that an inhibitor of Rho kinase (ROCKi; Y-27632) increases the survival rate of dissociated, single hES cells. This breakthrough has allowed new methods in hES cell culture to be developed, with the promise of increasing hES cell numbers into the realm of clinical relevance. In our studies demonstrating that ROCKi dramatically increases hES cell cryopreservation efficiency, we have observed that ROCKi treatment does not decrease hES cell's susceptibility to apoptosis. Rather, we hypothesize that ROCKi treatment desensitizes single hES cells to their environment reducing the odds that individual cells will undergo anoikis.


Asunto(s)
Células Madre Embrionarias/efectos de los fármacos , Células Madre Embrionarias/enzimología , Inhibidores de Proteínas Quinasas/farmacología , Quinasas Asociadas a rho/antagonistas & inhibidores , Apoptosis , Células Madre Embrionarias/citología , Humanos , Transducción de Señal , Quinasas Asociadas a rho/metabolismo
16.
Curr Protoc ; 1(9): e230, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34491629

RESUMEN

Progress in extracellular vesicle (EV) research over the past two decades has generated significant interest in using EVs in the biomedical field. Exosomes are a subgroup of EVs that comprise endocytic membrane-bound nanovesicles of 40 to 160 nm diameter. These vesicles have been shown to facilitate intercellular communication via the delivery of cellular molecules. There are currently several exciting applications for exosomes being developed in therapeutics, diagnostics, drug delivery, and cellular reprogramming. Stem cell-derived exosomes present the opportunity to harness the power of stem cells while circumventing several of the risks associated with their use. This review summarizes the recent developments in exosome technology and lends a prospective view to the future of exosome use and application in research and medicine. Through a review of relevant patent filings, recent literature, and ongoing clinical trials, a valuable overview of the field of exosomes is provided. © 2021 Wiley Periodicals LLC.


Asunto(s)
Exosomas , Vesículas Extracelulares , Sistemas de Liberación de Medicamentos , Estudios Prospectivos , Células Madre
17.
Stem Cell Res Ther ; 12(1): 55, 2021 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-33436078

RESUMEN

BACKGROUND: Human induced pluripotent stem cells (hiPSCs) hold enormous promise in accelerating breakthroughs in understanding human development, drug screening, disease modeling, and cell and gene therapies. Their potential, however, has been bottlenecked in a mostly laboratory setting due to bioprocess challenges in the scale-up of large quantities of high-quality cells for clinical and manufacturing purposes. While several studies have investigated the production of hiPSCs in bioreactors, the use of conventional horizontal-impeller, paddle, and rocking-wave mixing mechanisms have demonstrated unfavorable hydrodynamic environments for hiPSC growth and quality maintenance. This study focused on using computational fluid dynamics (CFD) modeling to aid in characterizing and optimizing the use of vertical-wheel bioreactors for hiPSC production. METHODS: The vertical-wheel bioreactor was modeled with CFD simulation software Fluent at agitation rates between 20 and 100 rpm. These models produced fluid flow patterns that mapped out a hydrodynamic environment to guide in the development of hiPSC inoculation and in-vessel aggregate dissociation protocols. The effect of single-cell inoculation on aggregate formation and growth was tested at select CFD-modeled agitation rates and feeding regimes in the vertical-wheel bioreactor. An in-vessel dissociation protocol was developed through the testing of various proteolytic enzymes and agitation exposure times. RESULTS: CFD modeling demonstrated the unique flow pattern and homogeneous distribution of hydrodynamic forces produced in the vertical-wheel bioreactor, making it the opportune environment for systematic bioprocess optimization of hiPSC expansion. We developed a scalable, single-cell inoculation protocol for the culture of hiPSCs as aggregates in vertical-wheel bioreactors, achieving over 30-fold expansion in 6 days without sacrificing cell quality. We have also provided the first published protocol for in-vessel hiPSC aggregate dissociation, permitting the entire bioreactor volume to be harvested into single cells for serial passaging into larger scale reactors. Importantly, the cells harvested and re-inoculated into scaled-up vertical-wheel bioreactors not only maintained consistent growth kinetics, they maintained a normal karyotype and pluripotent characterization and function. CONCLUSIONS: Taken together, these protocols provide a feasible solution for the culture of high-quality hiPSCs at a clinical and manufacturing scale by overcoming some of the major documented bioprocess bottlenecks.


Asunto(s)
Células Madre Pluripotentes Inducidas , Reactores Biológicos , Técnicas de Cultivo de Célula , Células Cultivadas , Humanos , Suspensiones
18.
Biochem Cell Biol ; 88(3): 479-90, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20555390

RESUMEN

Embryonic stem cells (ESCs) are derived from the inner cell mass (ICM) of the blastocyst. Because of their ability to differentiate into a variety of cell types, human embryonic stem cells (hESCs) provide an unlimited source of cells for clinical medicine and have begun to be used in clinical trials. Presently, although several hundred hESC lines are available in the word, only few have been widely used in basic and applied research. More and more hESC lines with differing genetic backgrounds are required for establishing a bank of hESCs. Here, we report the first Canadian hESC lines to be generated from cryopreserved embryos and we discuss how we navigated through the Canadian regulatory process. The cryopreserved human zygotes used in this study were cultured to the blastocyst stage, and used to isolate ICM via microsurgery. Unlike previous microsurgery methods, which use specialized glass or steel needles, our method conveniently uses syringe needles for the isolation of ICM and subsequent hESC lines. ICM were cultured on MEF feeders in medium containing FBS or serum replacer (SR). Resulting outgrowths were isolated, cut into several cell clumps, and transferred onto fresh feeders. After more than 30 passages, the two hESC lines established using this method exhibited normal morphology, karyotype, and growth rate. Moreover, they stained positively for a variety of pluripotency markers and could be differentiated both in vitro and in vivo. Both cell lines could be maintained under a variety of culture conditions, including xeno-free conditions we have previously described. We suggest that this microsurgical approach may be conducive to deriving xeno-free hESC lines when outgrown on xeno-free human foreskin fibroblast feeders.


Asunto(s)
Masa Celular Interna del Blastocisto/citología , Línea Celular , Separación Celular/métodos , Técnicas de Cultivo de Embriones/métodos , Células Madre Embrionarias/citología , Microcirugia/métodos , Canadá , Técnicas de Cultivo de Célula/métodos , Investigaciones con Embriones/ética , Humanos
19.
Toxicol Appl Pharmacol ; 247(2): 91-7, 2010 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-20576515

RESUMEN

Birth defects belong to the most serious side effects of pharmaceutical compounds or environmental chemicals. In vivo, teratogens most often affect the normal development of bones, causing growth retardation, limb defects or craniofacial malformations. The embryonic stem cell test (EST) is one of the most promising models that allow the in vitro prediction of embryotoxicity, with one of its endpoints being bone tissue development. The present study was designed to describe three novel inexpensive endpoints to assess developmental osteotoxicity using the model compounds penicillin G (non-teratogenic), 5-fluorouracil (strong teratogen) and all-trans retinoic acid (bone teratogen). These three endpoints were: quantification of matrix incorporated calcium by (1) morphometric analysis and (2) measurement of calcium levels as well as (3) activity of alkaline phosphatase, an enzyme involved in matrix calcification. To evaluate our data, we have compared the concentration curves and resulting ID(50)s of the new endpoints with mRNA expression for osteocalcin. Osteocalcin is an exclusive marker found only in mineralized tissues, is regulated upon compound treatment and reliably predicts the potential of a chemical entity acting as a bone teratogen. By comparing the new endpoints to quantitative expression of osteocalcin, which we previously identified as suitable to detect developmental osteotoxicity, we were ultimately able to illustrate IMAGE analysis and Ca(2+) deposition assays as two reliable novel endpoints for the EST. This is of particular importance for routine industrial assessment of novel compounds as these two new endpoints may substitute previously used molecular read-out methods, which are often costly and time-consuming.


Asunto(s)
Desarrollo Óseo/efectos de los fármacos , Células Madre Embrionarias/efectos de los fármacos , Determinación de Punto Final , Pruebas de Toxicidad/métodos , Fosfatasa Alcalina/metabolismo , Animales , Matriz Ósea/efectos de los fármacos , Matriz Ósea/enzimología , Matriz Ósea/metabolismo , Calcio/metabolismo , Línea Celular , Fluorouracilo/toxicidad , Ratones , Células 3T3 NIH , Penicilina G/toxicidad , Teratógenos/toxicidad , Tretinoina/toxicidad
20.
Circ Res ; 103(12): 1483-91, 2008 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-18948620

RESUMEN

Loss-of-function mutations in the human ERG1 potassium channel (hERG1) frequently underlie the long QT2 (LQT2) syndrome. The role of the ERG potassium channel in cardiac development was elaborated in an in vivo model of a homozygous, loss-of-function LQT2 syndrome mutation. The hERG N629D mutation was introduced into the orthologous mouse gene, mERG, by homologous recombination in mouse embryonic stem cells. Intact homozygous embryos showed abrupt cessation of the heart beat. N629D/N629D embryos die in utero by embryonic day 11.5. Their developmental defects include altered looping architecture, poorly developed bulbus cordis, and distorted aortic sac and branchial arches. N629D/N629D myocytes from embryonic day 9.5 embryos manifested complete loss of I(Kr) function, depolarized resting potential, prolonged action potential duration (LQT), failure to repolarize, and propensity to oscillatory arrhythmias. N629D/N629D myocytes manifest calcium oscillations and increased sarcoplasmic reticulum Ca(+2) content. Although the N629D/N629D protein is synthesized, it is mainly located intracellularly, whereas +/+ mERG protein is mainly in plasmalemma. N629D/N629D embryos show robust apoptosis in craniofacial regions, particularly in the first branchial arch and, to a lesser extent, in the cardiac outflow tract. Because deletion of Hand2 produces apoptosis, in similar regions and with a similar final developmental phenotype, Hand2 expression was evaluated. Robust decrease in Hand2 expression was observed in the secondary heart field in N629D/N629D embryos. In conclusion, loss of I(Kr) function in N629D/N629D cardiovascular system leads to defects in cardiac ontogeny in the first branchial arch, outflow tract, and the right ventricle.


Asunto(s)
Canales de Potasio Éter-A-Go-Go/genética , Regulación del Desarrollo de la Expresión Génica/genética , Homocigoto , Mutación Missense/genética , Disfunción Ventricular Derecha/embriología , Disfunción Ventricular Derecha/genética , Sustitución de Aminoácidos/genética , Animales , Asparagina/genética , Ácido Aspártico/genética , Gasto Cardíaco/genética , Canal de Potasio ERG1 , Femenino , Ventrículos Cardíacos/embriología , Ventrículos Cardíacos/metabolismo , Síndrome de QT Prolongado/embriología , Síndrome de QT Prolongado/genética , Síndrome de QT Prolongado/mortalidad , Ratones , Ratones Mutantes , Embarazo , Disfunción Ventricular Derecha/mortalidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA