Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Bioorg Med Chem ; 28(22): 115735, 2020 11 15.
Article in English | MEDLINE | ID: mdl-33007552

ABSTRACT

Soluble epoxide hydrolase (sEH), a novel therapeutic target for neuropathic pain, is a largely cytosolic enzyme that degrades epoxy-fatty acids (EpFAs), an important class of lipid signaling molecules. Many inhibitors of sEH have been reported, and to date, the 1,3-disubstituted urea has the highest affinity reported for the sEH among the central pharmacophores evaluated. An earlier somewhat water soluble sEH inhibitor taken to the clinic for blood pressure control had mediocre potency (both affinity and kinetics) and a short in vivo half-life. We undertook a study to overcome these difficulties, but the sEH inhibitors carrying a 1,3-disubstituted urea often suffer poor physical properties that hinder their formulation. In this report, we described new strategies to improve the physical properties of sEH inhibitors with a 1,3-disubstituted urea while maintaining their potency and drug-target residence time (a complementary in vitro parameter) against sEH. To our surprise, we identified two structural modifications that substantially improve the potency and physical properties of sEH inhibitors carrying a 1,3-disubstituted urea pharmacophore. Such improvements will greatly facilitate the movement of sEH inhibitors to the clinic.


Subject(s)
Diabetic Neuropathies/drug therapy , Enzyme Inhibitors/pharmacology , Epoxide Hydrolases/antagonists & inhibitors , Hypoglycemic Agents/pharmacology , Neuralgia/drug therapy , Animals , Diabetic Neuropathies/metabolism , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Epoxide Hydrolases/metabolism , Humans , Hypoglycemic Agents/chemical synthesis , Hypoglycemic Agents/chemistry , Mice , Molecular Docking Simulation , Molecular Structure , Neuralgia/metabolism , Solubility , Structure-Activity Relationship
2.
Br J Pharmacol ; 2023 May 09.
Article in English | MEDLINE | ID: mdl-37160660

ABSTRACT

A dominant assumption in pharmacology throughout the 20th century has been that in vivo target occupancy-and attendant pharmacodynamics-depends on the systemic concentration of drug relative to the equilibrium dissociation constant for the drug-target complex. In turn, the duration of pharmacodynamics is temporally linked to the systemic pharmacokinetics of the drug. Yet, there are many examples of drugs for which pharmacodynamic effect endures long after the systemic concentration of a drug has waned to (equilibrium) insignificant levels. To reconcile such data, the drug-target residence time model was formulated, positing that it is the lifetime (or residence time) of the binary drug-target complex, and not its equilibrium affinity per se, that determines the extent and duration of drug pharmacodynamics. Here, we review this model, its evolution over time, and its applications to natural ligand-macromolecule biology and synthetic drug-target pharmacology.

3.
Biomedicines ; 11(10)2023 Sep 22.
Article in English | MEDLINE | ID: mdl-37892973

ABSTRACT

Drugs with a long residence time at their target sites are often more efficacious in disease treatment. The mechanism, however, behind prolonged retention at the site of action is often difficult to understand for non-covalent agents. In this context, we focus on epichaperome agents, such as zelavespib and icapamespib, which maintain target binding for days despite rapid plasma clearance, minimal retention in non-diseased tissues, and rapid metabolism. They have shown significant therapeutic value in cancer and neurodegenerative diseases by disassembling epichaperomes, which are assemblies of tightly bound chaperones and other factors that serve as scaffolding platforms to pathologically rewire protein-protein interactions. To investigate their impact on epichaperomes in vivo, we conducted pharmacokinetic and target occupancy measurements for zelavespib and monitored epichaperome assemblies biochemically in a mouse model. Our findings provide evidence of the intricate mechanism through which zelavespib modulates epichaperomes in vivo. Initially, zelavespib becomes trapped when epichaperomes bound, a mechanism that results in epichaperome disassembly, with no change in the expression level of epichaperome constituents. We propose that the initial trapping stage of epichaperomes is a main contributing factor to the extended on-target residence time observed for this agent in clinical settings. Zelavespib's residence time in tumors seems to be dictated by target disassembly kinetics rather than by frank drug-target unbinding kinetics. The off-rate of zelavespib from epichaperomes is, therefore, much slower than anticipated from the recorded tumor pharmacokinetic profile or as determined in vitro using diluted systems. This research sheds light on the underlying processes that make epichaperome agents effective in the treatment of certain diseases.

4.
Cell Chem Biol ; 29(12): 1694-1708.e10, 2022 12 15.
Article in English | MEDLINE | ID: mdl-36493759

ABSTRACT

Allosteric coupling between the DNA binding site to the NAD+-binding pocket drives PARP-1 activation. This allosteric communication occurs in the reverse direction such that NAD+ mimetics can enhance PARP-1's affinity for DNA, referred to as type I inhibition. The cellular effects of type I inhibition are unknown, largely because of the lack of potent, membrane-permeable type I inhibitors. Here we identify the phthalazinone inhibitor AZ0108 as a type I inhibitor. Unlike the structurally related inhibitor olaparib, AZ0108 induces replication stress in tumorigenic cells. Synthesis of analogs of AZ0108 revealed features of AZ0108 that are required for type I inhibition. One analog, Pip6, showed similar type I inhibition of PARP-1 but was ∼90-fold more cytotoxic than AZ0108. Washout experiments suggest that the enhanced cytotoxicity of Pip6 compared with AZ0108 is due to prolonged target residence time on PARP-1. Pip6 represents a new class of PARP-1 inhibitors that may have unique anticancer properties.


Subject(s)
Antineoplastic Agents , Poly(ADP-ribose) Polymerase Inhibitors , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/chemistry , Allosteric Regulation , NAD/metabolism , Antineoplastic Agents/pharmacology , Binding Sites
5.
J Struct Biol X ; 4: 100014, 2020.
Article in English | MEDLINE | ID: mdl-32647818

ABSTRACT

Arginase-1 is a manganese-dependent metalloenzyme that catalyzes the hydrolysis of L-arginine into L-ornithine and urea. Arginase-1 is abundantly expressed by tumor-infiltrating myeloid cells that promote tumor immunosuppression, which is relieved by inhibition of Arginase-1. We have characterized the potencies of the Arginase-1 reference inhibitors (2S)-2-amino-6-boronohexanoic acid (ABH) and N ω-hydroxy-nor-L-arginine (nor-NOHA), and studied their pH-dependence and binding kinetics. To gain a better understanding of the structural changes underlying the high pH optimum of Arginase-1 and its pH-dependent inhibition, we determined the crystal structure of the human Arginase-1/ABH complex at pH 7.0 and 9.0. These structures revealed that at increased pH, the manganese cluster assumes a more symmetrical coordination structure, which presumably contributes to its increase in catalytic activity. Furthermore, we show that binding of ABH involves the presence of a sodium ion close to the manganese cluster. We also studied the investigational new drug CB-1158 (INCB001158). This inhibitor has a low-nanomolar potency at pH 7.4 and increases the thermal stability of Arginase-1 more than ABH and nor-NOHA. Moreover, CB-1158 displays slow association and dissociation kinetics at both pH 9.5 and 7.4, as indicated by surface plasmon resonance. The potent character of CB-1158 is presumably due to its increased rigidity compared to ABH as well as the formation of an additional hydrogen-bond network as observed by resolution of the Arginase-1/CB-1158 crystal structure.

6.
Eur J Pharmacol ; 848: 112-120, 2019 Apr 05.
Article in English | MEDLINE | ID: mdl-30703360

ABSTRACT

Growing evidence recommends incorporating the concept of drug-target residence times within drug development and screening programs. For many targets, systematic research for binding kinetics is emerging and reported, as in case of the histamine H3 receptor. Alternatively, fluorescent methods based on Foerster resonance energy transfer have been reported recently but application of fluorescence polarization to kinetics of unlabeled ligands is not known to us. Thus, we established a radiolabel-free, real-time resolving method that is compatible to high-throughput-screening programs with the objective to explore the underlying binding kinetics. This method takes benefit of bodilisant as H3 receptor ligand. Thereby, we detected short residence times around 5 min for the H3 receptor ligands ciproxifan, clobenpropit, thioperamide as well as pitolisant. Monitoring association rates, remarkably slower association rate constants were examined for ciproxifan and thioperamide when compared to those of pitolisant or clobenpropit. The affinities for the ligands derived by the kinetic approach differ from affinity estimates in literature using radiolabeled agonists in displacement assays. Further investigation raised exceptional pharmacological properties, consistent with occurrence of secondary binding sites at the H3 receptor. Validation of resulting affinity constants was successfully performed by displacement assays based on fluorescence polarization with bodilisant.


Subject(s)
Fluorescence Polarization/methods , Histamine Agonists/metabolism , Histamine H3 Antagonists/metabolism , Receptors, Histamine H3/metabolism , Dose-Response Relationship, Drug , HEK293 Cells , Histamine Agonists/pharmacology , Histamine H3 Antagonists/pharmacology , Humans , Ligands , Protein Binding/drug effects , Protein Binding/physiology
7.
Biochem Pharmacol ; 152: 129-142, 2018 06.
Article in English | MEDLINE | ID: mdl-29574067

ABSTRACT

A decade ago, the drug-target residence time model has been (re-)introduced, which describes the importance of binding kinetics of ligands on their protein targets. Since then, it has been applied successfully for multiple protein targets, including GPCRs, for the development of lead compounds with slow dissociation kinetics (i.e. long target residence time) to increase in vivo efficacy or with short residence time to prevent on-target associated side effects. To date, this model has not been applied in the design and pharmacological evaluation of novel selective ligands for the cannabinoid CB2 receptor (CB2R), a GPCR with therapeutic potential in the treatment of tissue injury and inflammatory diseases. Here, we have investigated the relationships between physicochemical properties, binding kinetics and functional activity in two different signal transduction pathways, G protein activation and ß-arrestin recruitment. We synthesized 24 analogues of 3-cyclopropyl-1-(4-(6-((1,1-dioxidothiomorpholino)methyl)-5-fluoropyridin-2-yl)benzyl)imidazoleidine-2,4-dione (LEI101), our previously reported in vivo active and CB2R-selective agonist, with varying basicity and lipophilicity. We identified a positive correlation between target residence time and functional potency due to an increase in lipophilicity on the alkyl substituents, which was not the case for the amine substituents. Basicity of the agonists did not show a relationship with affinity, residence time or functional activity. Our findings provide important insights about the effects of physicochemical properties of the specific substituents of this scaffold on the binding kinetics of agonists and their CB2R pharmacology. This work therefore shows how CB2R agonists can be designed to have optimal kinetic profiles, which could aid the lead optimization process in drug discovery for the study or treatment of inflammatory diseases.


Subject(s)
Cannabinoid Receptor Agonists/chemical synthesis , Cannabinoid Receptor Agonists/pharmacology , Imidazolidines/chemistry , Imidazolidines/pharmacology , Morpholines/chemistry , Morpholines/pharmacology , Receptor, Cannabinoid, CB2/physiology , Animals , Cannabinoid Receptor Agonists/chemistry , Cell Line , Cricetinae , Humans , Kinetics , Ligands , Molecular Structure , Protein Binding , Structure-Activity Relationship
8.
ACS Chem Neurosci ; 9(1): 29-39, 2018 01 17.
Article in English | MEDLINE | ID: mdl-28640596

ABSTRACT

The development of therapies for the treatment of neurological cancer faces a number of major challenges including the synthesis of small molecule agents that can penetrate the blood-brain barrier (BBB). Given the likelihood that in many cases drug exposure will be lower in the CNS than in systemic circulation, it follows that strategies should be employed that can sustain target engagement at low drug concentration. Time dependent target occupancy is a function of both the drug and target concentration as well as the thermodynamic and kinetic parameters that describe the binding reaction coordinate, and sustained target occupancy can be achieved through structural modifications that increase target (re)binding and/or that decrease the rate of drug dissociation. The discovery and deployment of compounds with optimized kinetic effects requires information on the structure-kinetic relationships that modulate the kinetics of binding, and the molecular factors that control the translation of drug-target kinetics to time-dependent drug activity in the disease state. This Review first introduces the potential benefits of drug-target kinetics, such as the ability to delineate both thermodynamic and kinetic selectivity, and then describes factors, such as target vulnerability, that impact the utility of kinetic selectivity. The Review concludes with a description of a mechanistic PK/PD model that integrates drug-target kinetics into predictions of drug activity.


Subject(s)
Antineoplastic Agents/pharmacology , Antineoplastic Agents/pharmacokinetics , Central Nervous System Neoplasms/drug therapy , Central Nervous System Neoplasms/metabolism , Drug Discovery/methods , Animals , Antineoplastic Agents/therapeutic use , Humans , Kinetics
9.
J Mol Biol ; 429(4): 574-586, 2017 02 17.
Article in English | MEDLINE | ID: mdl-28043854

ABSTRACT

Target residence time (τ) has been suggested to be a better predictor of the biological activity of kinase inhibitors than inhibitory potency (IC50) in enzyme assays. Surface plasmon resonance binding assays for 46 human protein and lipid kinases were developed. The association and dissociation constants of 80 kinase inhibitor interactions were determined. τ and equilibrium affinity constants (KD) were calculated to determine kinetic selectivity. Comparison of τ and KD or IC50 values revealed a strikingly different view on the selectivity of several kinase inhibitors, including the multi-kinase inhibitor ponatinib, which was tested on 10 different kinases. In addition, known pan-Aurora inhibitors resided much longer on Aurora B than on Aurora A, despite having comparable affinity for Aurora A and B. Furthermore, the γ/δ-selective PI3K inhibitor duvelisib and the δ-selective drug idelalisib had similar 20-fold selectivity for δ- over γ-isoform but duvelisib resided much longer on both targets.


Subject(s)
Phosphatidylinositol 3-Kinases/metabolism , Protein Kinase Inhibitors/metabolism , Surface Plasmon Resonance , Animals , Cell Line , ErbB Receptors/metabolism , Humans , Insecta/cytology , Insecta/metabolism , Phosphoinositide-3 Kinase Inhibitors
10.
J Mol Biol ; 429(14): 2211-2230, 2017 07 07.
Article in English | MEDLINE | ID: mdl-28539250

ABSTRACT

The protein kinase threonine tyrosine kinase (TTK; also known as Mps1) is a critical component of the spindle assembly checkpoint and a promising drug target for the treatment of aggressive cancers, such as triple negative breast cancer. While the first TTK inhibitors have entered clinical trials, little is known about how the inhibition of TTK with small-molecule compounds affects cellular activity. We studied the selective TTK inhibitor NTRC 0066-0, which was developed in our own laboratory, together with 11 TTK inhibitors developed by other companies, including Mps-BAY2b, BAY 1161909, BAY 1217389 (Bayer), TC-Mps1-12 (Shionogi), and MPI-0479605 (Myrexis). Parallel testing shows that the cellular activity of these TTK inhibitors correlates with their binding affinity to TTK and, more strongly, with target residence time. TTK inhibitors are therefore an example where target residence time determines activity in in vitro cellular assays. X-ray structures and thermal stability experiments reveal that the most potent compounds induce a shift of the glycine-rich loop as a result of binding to the catalytic lysine at position 553. This "lysine trap" disrupts the catalytic machinery. Based on these insights, we developed TTK inhibitors, based on a (5,6-dihydro)pyrimido[4,5-e]indolizine scaffold, with longer target residence times, which further exploit an allosteric pocket surrounding Lys553. Their binding mode is new for kinase inhibitors and can be classified as hybrid Type I/Type III. These inhibitors have very potent anti-proliferative activity that rivals classic cytotoxic therapy. Our findings will open up new avenues for more applications for TTK inhibitors in cancer treatment.


Subject(s)
Antineoplastic Agents/pharmacology , Cell Cycle Proteins/antagonists & inhibitors , Cell Proliferation/drug effects , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/antagonists & inhibitors , Cell Cycle Proteins/chemistry , Cell Line, Tumor , Crystallography, X-Ray , Humans , Kinetics , Models, Molecular , Protein Binding , Protein Conformation/drug effects , Protein Serine-Threonine Kinases/chemistry , Protein-Tyrosine Kinases/chemistry
11.
Bol Med Hosp Infant Mex ; 73(6): 424-431, 2016.
Article in English | MEDLINE | ID: mdl-29421287

ABSTRACT

The efficiency and the propensity of a drug to be bound to its target protein have been inseparable concepts for decades now. The correlation between the pharmacological activity and the binding affinity has been the first rule to design and optimize a new drug rationally. However, this argument does not prove to be infallible when the results of in vivo assays have to be confronted. Only recently, we understand that other magnitudes as the kinetic rates of binding and unbinding, or the mean residence time of the complex drug-protein, are equally relevant to draw a more accurate model of the mechanism of action of a drug. It is in this scenario where new computational techniques to simulate the all-atom dynamics of the biomolecular system find its valuable place on the challenge of designing new molecules for more effective and less toxic therapies.

13.
Bol. méd. Hosp. Infant. Méx ; 73(6): 424-431, Nov.-Dec. 2016.
Article in English | LILACS | ID: biblio-951261

ABSTRACT

Abstract: The efficiency and the propensity of a drug to be bound to its target protein have been inseparable concepts for decades now. The correlation between the pharmacological activity and the binding affinity has been the first rule to design and optimize a new drug rationally. However, this argument does not prove to be infallible when the results of in vivo assays have to be confronted. Only recently, we understand that other magnitudes as the kinetic rates of binding and unbinding, or the mean residence time of the complex drug-protein, are equally relevant to draw a more accurate model of the mechanism of action of a drug. It is in this scenario where new computational techniques to simulate the all-atom dynamics of the biomolecular system find its valuable place on the challenge of designing new molecules for more effective and less toxic therapies.


Resumen: La eficiencia de un fármaco se ha relacionado habitualmente con su constante de afinidad, magnitud que puede ser medida experimentalmente in vitro y que cuantifica la propensión mostrada por la molécula ligando para interaccionar con su proteína diana. Este modo de entender el mecanismo de acción ha guiado durante años el desarrollo de nuevas moléculas con potencial farmacológico. Sin embargo, dicho modelo o criterio no es infalible cuando se confronta con los resultados de ensayos in vivo. Otras magnitudes, como las constantes cinéticas de asociación o disociación o el tiempo de residencia del ligando acoplado a su proteína diana, demuestran ser igualmente necesarias para comprender y predecir la capacidad farmacológica del compuesto químico. En este nuevo escenario, con ayuda de las técnicas computacionales de simulación molecular, la correcta caracterización del proceso dinámico de unión y desunión del ligando y receptor resulta imprescindible para poder diseñar racionalmente nuevas moléculas que permitan terapias más eficaces y menos tóxicas.

SELECTION OF CITATIONS
SEARCH DETAIL