Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Bioorg Chem ; 118: 105456, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34800887

RESUMEN

Importance of extracellular nucleotides is widely understood. These nucleotides act as ligand for P2X and P2Y receptors and modulate a variety of biological functions. However, their extracellular concentration is maintained by a chain of enzymes termed as ecto-nucleotidases. Amongst them, nucleoside triphosphate diphosphohydrolases (NTPDases) is an important enzyme family responsible for the dephosphorylation of these nucleotides. Overexpression of NTPDases leads to many pathological conditions such as cancer and thrombosis. So far, only a few NTPDase inhibitors have been reported. Considering this scarcity of (NTPDase) inhibitors, a number of thiadiazole amide derivatives were synthesized and screened against human (h)-NTPDases. Several compounds showed promising inhibitory activity; compound 5a (IC50 (µM); 0.05 ± 0.008) and 5g (IC50 (µM); 0.04 ± 0.006) appeared to be the most distinguished molecules corresponding to h-NTPDase1 and -2. However, h-NTPDase3 was the least susceptible isozyme and only three compounds (5d, 5e, 5j) strongly inhibited h-NTPDase3. Interestingly, compound 5e was recognized as the most active compound that showed dual inhibition against h-NTPDase3 as well as against h-NTPDase8. For better comprehension of binding mode of these inhibitors, most potent inhibitors were docked with their respective isozyme.


Asunto(s)
Adenosina Trifosfatasas/antagonistas & inhibidores , Amidas/farmacología , Apirasa/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Tiadiazoles/farmacología , Adenosina Trifosfatasas/metabolismo , Amidas/síntesis química , Amidas/química , Apirasa/metabolismo , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Humanos , Estructura Molecular , Relación Estructura-Actividad , Tiadiazoles/síntesis química , Tiadiazoles/química
2.
Bioorg Chem ; 121: 105658, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35182888

RESUMEN

A variety of diarylpyrazole derivatives III-VI were synthesized and structurally characterized using FTIR, 1H and 13C NMR spectroscopy, and in case of compound VIb by X-ray single crystal analysis. The in vitro biological studies revealed that seven of the diarylpyrazole derivatives IIIa, IIIb, IIId, IIIe, IVa, IVb and IVd are highly potent inhibitors of acetylcholinesterase enzyme with IC50 values of 0.48 ± 0.092 µg/mL, 0.45 ± 0.093 µg/mL, 0.30 ± 0.014 µg/mL, 0.59 ± 0.072 µg/mL, 0.29 ± 0.084 µg/mL, 0.56 ± 0.010 µg/mL and 0.28 ± 0.096 µg/mL, respectively. All these seven products were more potent than the standard drug, donepezil (IC50 = 0.73 ± 0.015 µg/mL), while compounds IIIc (0.67 ± 0.099 µg/ml) and VIa (0.66 ± 0.069 µg/ml) are almost equipotent to the donepezil. Particularly, compounds IVa and IVd are highly active acetylcholinesterase enzyme inhibitors, demonstrating more than two-fold inhibitory activity than the reference inhibitor. Molecular docking studies were carried out to identify the possible binding modes of the diarylpyrazoles within the active pocket of the enzymes. The docking interactions of the synthesized compounds with acetylcholinesterase also provided high docking scores. These results clearly indicate the potential of these compound as powerful lead molecules for further investigations.


Asunto(s)
Acetilcolinesterasa , Inhibidores de la Colinesterasa , Acetilcolinesterasa/metabolismo , Inhibidores de la Colinesterasa/química , Donepezilo , Simulación del Acoplamiento Molecular , Estructura Molecular , Relación Estructura-Actividad
3.
Int J Neurosci ; : 1-17, 2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-36259511

RESUMEN

Backgound: Alzheimer disease (AD) is a disastrous disease characterized by accretion of amyloid-beta plaques, neurofibrillary tangles inducing oxidative stress, loss of neuronal functions and continuous progression of cognitive impairment leading to severe dementia.Material and Methods: The newly synthesized benzimidazole derivative 4-chloro-3-(2-phenyl-1H-benzimidazole-1-sulfonyl) benzoic acid (CB) was evaluated for its anti-Alzheimer activity using in silico, in vivo, in vitro and molecular techniques (ELISA, WB & IHC).Results: In-silico studies revealed that CB has atomic contact energy values of -3.9 to -8.9 kcal/mol against selected targets. In vitro assay showed that CB caused acetylcholinesterase (AChE) and diphenyl-1-picrylhydrazyl inhibition. In-vivo findings revealed improvement in dementia as observed in the morris water maze test and Ymaze test. Amyloid-beta disaggregation, increased level of anti-oxidants, decreased expressions of inflammatory markers and enhanced cellular architecture were found in the cortex and hippocampus of treated rats in the histopathological examination, immunohistochemistry analysis, enzyme-linked immunosorbent assay and western blot analysis.Conclusions: This study revealed that CB possess different binding affinities with the Alzheimer-related targets and it possess anti-Alzheimer activity, mediated via AChE and amyloid-beta inhibition, anti-oxidant and anti-inflammatory pathways.

4.
Molecules ; 27(16)2022 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-36014311

RESUMEN

Isoxazole derivatives are significant enough due to their wide range of pharmacological and therapeutic activities. The purpose of the current study is to use computational, in vitro, in vivo, and extensive molecular approaches to examine the possible anti-ulcer activity of 4-benzylidene-3 methyl-1,2-isoxazol-5(4H)-one (MBO). Biovia Discovery Studio visualizer (DSV) was utilized for virtual screening. A tissue antioxidant investigation, H+/K+-ATPase test, and anti-H. pylori activities were carried out. ELISA, immunohistochemistry, and PCR methods were employed for the proteome analysis. An ethanol-induced stomach ulcer model was used to examine the anti-ulcer potential in rats. The binding affinities for MBO ranged from -5.4 to -8.2 Kcal/mol. In vitro findings revealed inhibitory activity against H. pylori and the H+/K+-ATPase pump. It also enhanced levels of glutathione, catalase, and glutathione-S-transferase and reduced lipid peroxidation levels in gastric tissues of rats. In vivo results showed the gastro-protective effect of MBO (30 mg/kg) in ulcerative rat stomachs. The proteomic study revealed decreased expression of inflammatory markers (cyclooxygenase-2, p-NFkB, and TNF-α). In RT-PCR analysis, the expression levels of H+/K+-ATPase were reduced. Furthermore, ADMET (absorption, distribution, metabolism, excretion and toxicity) studies revealed that MBO has high GIT solubility and has a safer profile for cardiac toxicity. This study suggests that MBO displayed anti-ulcer potential, which may have been mediated through the inhibition of the H+/K+-ATPase pump, as well as antioxidant and anti-inflammatory pathways. It has the potential to be a lead molecule in the treatment of peptic ulcers with fewer adverse effects.


Asunto(s)
Antiulcerosos , Helicobacter pylori , Úlcera Gástrica , Animales , Antiulcerosos/química , Antioxidantes/metabolismo , Etanol/metabolismo , Mucosa Gástrica , Glutatión/metabolismo , ATPasa Intercambiadora de Hidrógeno-Potásio/metabolismo , Isoxazoles/farmacología , Estrés Oxidativo , Extractos Vegetales/química , Proteómica , Ratas , Úlcera Gástrica/inducido químicamente , Úlcera Gástrica/tratamiento farmacológico , Úlcera Gástrica/prevención & control
5.
Neurochem Res ; 46(4): 905-920, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33486698

RESUMEN

Alzheimer's disease (AD) is age-dependent neurological disorder with progressive loss of cognition and memory. This multifactorial disease is characterized by intracellular neurofibrillary tangles, beta amyloid plaques, neuroinflammation, and increased oxidative stress. The increased cellular manifestations of these markers play a critical role in neurodegeneration and pathogenesis of AD. Therefore, reducing neurodegeneration by decreasing one or more of these markers may provide a potential therapeutic roadmap for the treatment of AD. AD causes a devastating loss of cognition with no conclusive and effective treatment. Many synthetic compound containing isoxazolone nucleus have been reported as neuroprotective agents. The aim of this study was to explore the anti-Alzheimer's potential of a newly synthesized 3,4,5-trimethoxy isoxazolone derivative (TMI) that attenuated the beta amyloid (Aß1-42) and tau protein levels in streptozotocin (STZ) induced Alzheimer's disease mouse model. Molecular analysis revealed increased beta amyloid (Aß1-42) protein levels, increased tau protein levels, increased cellular oxidative stress and reduced antioxidant enzymes in STZ exposed mice brains. Furthermore, ELISA and PCR were used to validate the expression of Aß1-42. Pre-treatment with TMI significantly improved the memory and cognitive behavior along with ameliorated levels of Aß1-42 proteins. TMI treated mice further showed marked increase in GSH, CAT, SOD levels while decreased levels of acetylcholinesterase inhibitors (AChEI's) and MDA intermediate. The multidimensional nature of isoxazolone derivatives and its versatile affinity towards various targets highpoint its multistep targeting nature. These results indicated the neuroprotective potential of TMI which may be considered for the treatment of neurodegenerative disease specifically in AD.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Isoxazoles/uso terapéutico , Fármacos Neuroprotectores/uso terapéutico , Acetilcolinesterasa/metabolismo , Enfermedad de Alzheimer/inducido químicamente , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Animales , Encéfalo/efectos de los fármacos , Encéfalo/patología , Evaluación Preclínica de Medicamentos , Prueba de Laberinto Elevado , Femenino , Isoxazoles/metabolismo , Masculino , Ratones , Simulación del Acoplamiento Molecular , Fármacos Neuroprotectores/metabolismo , Prueba de Campo Abierto/efectos de los fármacos , Fragmentos de Péptidos/metabolismo , Unión Proteica , Estreptozocina , Proteínas tau/metabolismo
6.
Bioorg Chem ; 116: 105385, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34600331

RESUMEN

Managing diabetes that is a global life-threatening problem, remains a challenge for the scientific community. The inhibition of α-amylase and α-glucosidase enzymes which are responsible for the digestion of dietary carbohydrates is an effective strategy to control postprandial hyperglycemia. Herein, we report the novel and highly potent inhibitors of α-amylase and α-glucosidase, namely isatin-hydrazide conjugates 1a - 1j that are easily accessed in two steps from simple and inexpensive commercially available isatin. The in vitro bio-evaluations of these compounds revealed that conjugates 1a, 1h and 1f are highly potent inhibitors of α-amylase with IC50 values of 19.6, 12.1 and 18.3 µg/ml, respectively as compared to the standard, acarbose (IC50 = 36.2 µg/ml). Similarly, the conjugates 1a, 1b, 1d, 1f and 1i showed significant activity against α-glucosidase with IC50 values of 14.8, 25.6, 13.2, 14.5 and 16.5 µg/ml, respectively as compared to the acarbose (IC50 = 34.5 µg/ml). Notably, the compounds 1a and 1f were found to be highly potent against both α-amylase and α-glucosidase enzymes, demonstrating about two-fold better inhibitory activity than the reference inhibitor. Molecular docking studies were performed to recognize the possible binding modes of the compounds with the active pocket of the enzymes. The results of this study divulge the potential of these compounds as powerful and inexpensive lead molecules for future investigations.


Asunto(s)
Inhibidores de Glicósido Hidrolasas/farmacología , Hidrazinas/farmacología , Isatina/farmacología , alfa-Amilasas/antagonistas & inhibidores , alfa-Glucosidasas/metabolismo , Cristalografía por Rayos X , Relación Dosis-Respuesta a Droga , Inhibidores de Glicósido Hidrolasas/síntesis química , Inhibidores de Glicósido Hidrolasas/química , Humanos , Hidrazinas/química , Isatina/química , Modelos Moleculares , Estructura Molecular , Relación Estructura-Actividad , alfa-Amilasas/metabolismo
7.
Molecules ; 26(8)2021 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-33920713

RESUMEN

Rosa webbiana L. (Rosaceae) is one of the least reported and most understudied members of this family. It is native to the Himalayan regions of Pakistan and Nepal. The anti-convulsant effect of n-hexane extract of fruit of Rosa webbiana was investigated in a pentylenetetrazole (PTZ)-induced animal model of epilepsy. Male Sprague-Dawley rats were divided into six groups (n = 7) including control, PTZ (40 mg/kg), diazepam (4 mg/kg) and n-hexane extract (at 50, 150 and 300 mg/kg). Convulsive behavior was observed and resultant seizures were scored, animals sacrificed and their brains preserved. Chitosan nanoparticles were prepared using the ionic gelation method and characterized by UV-analysis, zeta potential and Fourier transform infrared spectroscopy (FTIR). The effects of all the treatments on the expression of phosphorylated cytokine tumor necrosis factor α (p-TNF-α) and phosphorylated transcription factor nuclear factor kappa B (p-NF-κB) expression in the cortex and hippocampus of the brains of treated rats were studied through enzyme linked immunosorbent assay (ELISA) and morphological differences and surviving neuronal number were recorded through hematoxylene and eosin (H&E) staining. Significant changes in seizures score and survival rate of rats were observed. Downregulation of neuro-inflammation, p-TNF-α and p-NF-κB was evident. Gas Chromatography-Mass Spectrometry (GC-MS) analysis of this fraction showed multiple constituents of interest, including esters, alkanes and amines.


Asunto(s)
Apoptosis/efectos de los fármacos , Frutas/química , Rosa/química , Factor de Necrosis Tumoral alfa/genética , Quitosano/química , Quitosano/farmacología , Epilepsia/tratamiento farmacológico , Epilepsia/genética , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , FN-kappa B/genética , Fármacos Neuroprotectores/farmacología
8.
Pak J Pharm Sci ; 34(4(Supplementary)): 1509-1517, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34799326

RESUMEN

Due to the emerging mortality rate of colorectal cancer there is a high need for the management and control of this disease. Although several treatment approaches are being developed day by day yet the high incidence rate of colorectal cancer is still not controlled. To ease in the development of treatment therapies for colorectal cancer two derivatives of ethyl 2-aminothiazole 4-carboxylate were designed and synthesized. The compounds Ethyl 2-(2-(1,3-dioxoisoindolin-2-yl)acetamido)thiazole-4-carboxylate (5a) and ethyl 2-(2-(1,3-dioxoisoindolin-2-yl)-3-phenylpropanamido)thiazole-4-carboxylate (5b) were characterized and studied for their anti-cancer activities. The in silico molecular modeling studies were performed against the target protein beta-catenin which is an important player in the progression of colorectal cancer. The in silico ADMET studies were performed to assess the basic physicochemical properties of these compounds. The in vitro antiproliferative assay and the enzyme inhibitory assay was performed to validate the role of these compounds in the colorectal cancer. The preliminary cytotoxic assay and the MTT assay of the compounds 5a and 5b against the colorectal cancer cell line HCT 116 showed 60% inhibition of cell proliferation with IC50 of 0.72µM and 1.55µM, respectively. The standard methotrexate showed IC50 of 0.7µM showing potent inhibitory action of these compounds. The in vitro validation of the anti-cancer effect of both compounds revealed significant inhibition of beta-catenin concentration at higher doses as compared to control. Both the in vitro and in vivo assays of compounds showed effective anti-cancer activities and depicts the future potential of these compounds in colorectal cancer.


Asunto(s)
Aminoácidos/química , Antineoplásicos/síntesis química , Antineoplásicos/farmacología , Diseño de Fármacos , Tiazoles/química , Animales , Antineoplásicos/farmacocinética , Artemia , Neoplasias Colorrectales/tratamiento farmacológico , Células HCT116 , Humanos , Modelos Moleculares , Simulación del Acoplamiento Molecular , Estructura Molecular , Conformación Proteica
9.
Pak J Pharm Sci ; 34(3(Supplementary)): 1157-1163, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-34602446

RESUMEN

Routinely used anti-inflammatory drugs are associated with off-target effects such as cyclooxygenase (COX)-1 inhibition and gastric ulcers. The aim of this study is to examine the anti-inflammatory potential and gastroprotective effects of synthetic amino acid derivatives of 2-mercaptobenzimidazole (MBAA1, MBAA2, MBAA3, MBAA4 and MBAA5). The results showed that compound MBAA5 possess a potential anti-inflammatory action by inhibition of 15-LOX and COX-2. MBAA5 also attenuated the pro-inflammatory cytokines and mediators (TNF-α, IL-1ß and COX-2) in rat hind paw in carrageenan-induced inflammatory model of rat. 2-mercaptobenzimidazole derivative, MBAA5 also inhibited gastric H+/K+ ATPase and demonstrated a better selectivity index for COX-2 (SI 27.17) in comparison to celecoxib (SI 41.43). Molecular docking studies predicted the binding interactions of the synthesized compounds with retrieved target proteins of H+/K+ ATPase, COX-1, COX-2, and 15-LOX. The results of in silico and molecular docking analysis of amino acid derivatives of 2-mercaptobenzimidazoles further explained their pharmacological activities. Moreover, these compounds presented better antimicrobial activity against three clinical isolates of Helicobacter pylori. Together, our findings suggested that these synthetic 2-mercaptobenzimidazole derivatives are safer therapeutic candidates for inflammation.


Asunto(s)
Aminoácidos/farmacología , Araquidonato 15-Lipooxigenasa/efectos de los fármacos , Bencimidazoles/farmacología , Ciclooxigenasa 2/efectos de los fármacos , Citocinas/efectos de los fármacos , ATPasa Intercambiadora de Hidrógeno-Potásio/efectos de los fármacos , Aminoácidos/química , Animales , Antiinflamatorios no Esteroideos/efectos adversos , Araquidonato 15-Lipooxigenasa/metabolismo , Bencimidazoles/química , Carragenina , Simulación por Computador , Ciclooxigenasa 1/efectos de los fármacos , Ciclooxigenasa 1/metabolismo , Ciclooxigenasa 2/metabolismo , Inhibidores de la Ciclooxigenasa 2/farmacología , Citocinas/metabolismo , ATPasa Intercambiadora de Hidrógeno-Potásio/metabolismo , Helicobacter pylori/efectos de los fármacos , Inflamación/metabolismo , Interleucina-1beta/efectos de los fármacos , Interleucina-1beta/metabolismo , Inhibidores de la Lipooxigenasa/farmacología , Simulación del Acoplamiento Molecular , Ratas , Úlcera Gástrica/inducido químicamente , Factor de Necrosis Tumoral alfa/efectos de los fármacos , Factor de Necrosis Tumoral alfa/metabolismo
10.
Drug Dev Res ; 81(7): 893-903, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32662202

RESUMEN

A series of new isoxazolone (3a-d) and pyrazolone (4a-d) derivatives were synthesized and assessed for their antioxidant and analgesic activity. Among synthesized compounds, 3b and 4b having nitro (NO2 ) group show high analgesic activity at a dose of 6 mg/kg. Analgesic activity was further proceeded to explore the contribution of opioidergic mechanisms in the mediation of analgesic effects. Animals were administered with naloxone, a nonselective opioid inverse agonist, at the dose of 0.5 mg/kg. The results obtained suggested that the analgesic effects of the synthesized compounds were not reversed by naloxone, specifying that the compounds 3b and 4b do not follow the opioidergic pathway in order to relieve pain in animal models. Further, the binding interactions of compounds 3b and 4b were analyzed by docking them against nonopioid receptors COX-1 (3N8X) and COX-2 (3LN1). The results demonstrate the analgesic potential of isoxazolone and pyrazolone derivatives, especially compounds 3b and 4b can be considered promising lead molecules for further investigation and development into potent analgesic drugs. In addition, the antioxidant potential of compounds was also found to be related to better analgesic activity, thus providing an insight into the role of oxidative stress in the mediation of analgesia.


Asunto(s)
Analgésicos , Antioxidantes , Isoxazoles , Pirazolonas , Analgésicos/química , Analgésicos/uso terapéutico , Animales , Antioxidantes/química , Antioxidantes/uso terapéutico , Compuestos de Bifenilo/química , Isoxazoles/química , Isoxazoles/uso terapéutico , Ratones , Simulación del Acoplamiento Molecular , Dolor/tratamiento farmacológico , Picratos/química , Pirazolonas/química , Pirazolonas/uso terapéutico
11.
Drug Dev Res ; 81(8): 1057-1072, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32780491

RESUMEN

Benzimidazole is an important pharmacophore for clinically active drugs against inflammation and treatment of pain, however, it is associated with gastrointestinal side effects. Here we synthesized benzimidazole based agents with significant analgesic/anti-inflammatory potential but with less gastrointestinal adverse effects. In this study, we synthesized novel, orally bioavailable 2-mercaptobenzimidazole amino acid conjugates (4a-4o) and screened them for analgesic, anti-inflammatory and gastro-protective effects. The synthesized 2-mercaptbenzimidazole derivatives were characterized for their structure using FTIR, 1 H NMR and 13 C NMR spectroscopic techniques. The 2-mercaptobenzimidazole amino acid conjugates have found to possess potent analgesic, anti-inflammatory and gastroprotective activities, particularly with compound 4j and 4k. Most of the compounds exhibited remarkable anti-ulcer and antisecretory effects. Molecular docking studies were carried out to study the binding affinities and interactions of the synthesized compounds with target proteins COX-2 (PDB ID: 3LN1) and H+ /K+ -ATPase (PDB ID: 5Y0B). Our results support the clinical promise of these newly synthesized 2-mercaptobezimidazol conjugates as a component of therapeutic strategies for inflammation and analgesia, for which the gastric side effects are always a major limitation.

12.
Drug Dev Res ; 80(5): 646-654, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31032540

RESUMEN

A series of N-(5-(alkylthio)-1,3,4-oxadiazol-2-yl)methyl)benzamides 6a-i were synthesized as alkaline phosphatase inhibitors. The intermediate 5-substituted 1,3,4-oxadiazole-2-thione 4 was synthesized starting with hippuric acid. Hippuric acid in the first step was converted into corresponding methyl ester 2 which upon reaction with hydrazine hydrate furnished the formation of hydrazide 3. The hippuric acid hydrazide was then cyclized into 5-substituted 1,3,4-oxadiazole-2-thione 4. The intermediate 4 was then reacted with alkyl or aryl halides 5a-5i to afford the title compounds N-(5-(methylthio)-1,3,4-oxadiazol-2-yl)methyl)benzamides 6a-i. The bioassay results showed that compounds 6a-i exhibited good to excellent alkaline phosphatase inhibitory activity. The most potent activity was exhibited by the compound 6i having IC50 value 0.420 µM, whereas IC50 value of standard (KH2 PO4 ) was 2.80 µM. Molecular docking studies was performed against alkaline phosphatase enzyme (PDBID 1EW2) to check binding affinity of the synthesized compounds 6a-i against target protein. The docking results showed that three compounds 6c, 6e, and 6i have maximum binding interactions with binding energy values of -8 kcal/mol. The compound 6i displayed the interactions of oxadiazole ring nitrogen with amino acid His265 having a binding distance 2.13 Ǻ. It was concluded from our results that synthesized compounds, especially compound 6i may serve as lead structure to design more potent inhibitors of human alkaline phosphatase.


Asunto(s)
Fosfatasa Alcalina/antagonistas & inhibidores , Benzamidas/síntesis química , Inhibidores Enzimáticos/síntesis química , Oxadiazoles/química , Fosfatasa Alcalina/química , Benzamidas/química , Benzamidas/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Humanos , Modelos Moleculares , Simulación del Acoplamiento Molecular , Estructura Molecular , Conformación Proteica , Relación Estructura-Actividad
13.
Pak J Pharm Sci ; 30(6): 2271-2279, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29175800

RESUMEN

Methicillin resistant Staphylococcus aureus (MRSA) is resistant to known antibiotics and has become a great challenge for healthcare professionals, therefore new molecules are needed to manage this situation. In this study, new lead molecules 4-Amino-5-(2-Hydroxyphenyl)-1,2,4-Triazol-3-Thione (U1) and4-(2-hydroxybenzalidine) amine-5-(2-hydroxy) phenyl-1,2,4-triazole-3-thiol(U1A Schiff base) were synthesized by fusion method that showed promising antibacterial activity (U1A: 26mm and U1: 14mm) against MRSA.FT-IR and NMR were used for structural characterization of these derivatives and their toxicity properties were assessed by Lipinski's rule of 5. New potential drug targets of this bacterium were also identified by comparative and subtraction genomics techniques. In particular, octanoyl-[GcvH]: protein N-octanoyl transferase and phosphor mevalonate kinase were used as potential targets in AutoDock Vina studies. This study can provide a framework to find potential drug targets for other pathogenic microorganisms that can successfully be docked with compound U1 and U1A.


Asunto(s)
Antibacterianos/síntesis química , Antibacterianos/farmacología , Diseño Asistido por Computadora , Diseño de Fármacos , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Triazoles/síntesis química , Triazoles/farmacología , Aciltransferasas/antagonistas & inhibidores , Aciltransferasas/metabolismo , Antibacterianos/farmacocinética , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/metabolismo , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/farmacología , Espectroscopía de Resonancia Magnética , Staphylococcus aureus Resistente a Meticilina/enzimología , Staphylococcus aureus Resistente a Meticilina/patogenicidad , Simulación del Acoplamiento Molecular , Estructura Molecular , Terapia Molecular Dirigida/métodos , Fosfotransferasas (Aceptor del Grupo Fosfato)/antagonistas & inhibidores , Fosfotransferasas (Aceptor del Grupo Fosfato)/metabolismo , Espectroscopía Infrarroja por Transformada de Fourier , Relación Estructura-Actividad , Triazoles/farmacocinética
14.
Nat Prod Res ; : 1-7, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38753976

RESUMEN

The objectives of the study were to conduct phytochemical screening of crude extracts of Cissampelos pareira L. and Lantana camara L. and assessing their biological potentials against protein kinase enzymes, followed by the evaluation of antioxidant and antimicrobial capacities. The n-hexane (A-І, B-І) and ethyl extracts (A-ІІ, B-ІІ) displayed moderate to good antioxidant activity, while the methanol fractions (A-ІІІ, B-ІІІ) showed significant antioxidant activity. Among all the three crude extracts, the ethyl acetate extract (B-II) of L. camara exhibited significant protein kinase inhibitions with remarkable antioxidant potential and was therefore purified through column chromatography. Fraction B-ІІ-2 showed the highest flavonoid contents (735.43), with the most promising protein kinase inhibition exerted by the subtractions B-ІІ-2, B-ІІ-3, B-ІІ-4, and B-ІІ-7. Hence, active fractions were examined through GC-MS for the identification of active constituents, revealing 17 active compounds. In the case of Lantana camara, the ethyl acetate crude extract along with fractions led to the identification of more than thirty compounds, which may be further explored to find a potential lead for drug development.

15.
Heliyon ; 10(9): e30102, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38726192

RESUMEN

Many non-steroidal anti-inflammatory drugs (NSAIDs) concurrently inhibit both COX-1 and COX-2, with a preference for specifically targeting COX-2 due to its significant involvement in various pathologies. In addition to COX enzymes, several other targets, including Aldose reductase, Aldo-ketoreductase family 1-member C2, and Phospholipase A2, have been identified as contributors to inflammation and a myriad of other diseases. In this context, a series of 2-substituted benzimidazole derivatives was synthesized and assessed for their anti-inflammatory potential through both in vitro and in vivo assays. Molecular docking studies were conducted to elucidate the mechanism of action of these compounds against COX enzymes and other therapeutic targets associated with NSAIDs, such as Aldose reductase, AIKRC, and Phospholipase A2. Among the synthesized compounds, B2, B4, B7, and B8 demonstrated IC50 values lower than the standard ibuprofen, as determined by the Luminol-enhanced chemiluminescence assay. Validation of these findings was achieved through an in vivo carrageenan-induced mice paw edema model, confirming a comparable anti-inflammatory effect to diclofenac sodium observed in vitro. Notably, these compounds exhibited significant binding affinity with all therapeutic targets investigated in this study. These results suggest that the newly synthesized derivatives possess noteworthy anti-inflammatory potential, warranting further exploration for the development of novel multi-targeting inhibitors.

16.
J Biomol Struct Dyn ; : 1-18, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38351577

RESUMEN

Heterocyclic compounds with oxazole and imidazole rings in their structure have disclosed momentous biological aptitudes. Taking into account their superlative attributes, the present study was designed to introduce a new synthetic scheme to make new derivatives with tremendous futuristic pharmacological potentialities. Series of Oxazolones were synthesized by using substituted benzaldehyde with benzyl halides to produce respective benzaldehyde derivatives 1 (a-d) which further reacted with hippuric acid to yield oxazolones 2 (a-e). Newly synthesized oxazolones then reacted with 4-chloroaniline to yield corresponding imidazolones 3 (a-e). All the compounds were characterized by using FTIR and NMR spectroscopic techniques. Docking studies of Compounds were conducted using AutoDock Vina and analyzed with PYMOL. All synthesized oxazolone and imidazolone derivatives exhibited antioxidant potential, demonstrated by their IC50 values compared to ascorbic acid standard. Oxazolone derivatives (2a-2e) exhibited good acetyl cholinesterase inhibitory potential whereas Imidazolone series did not show significant inhibition as shown by their IC50 values compared to donepezil as a standard. Docking studies of all compounds against acetylcholinesterase demonstrated favorable binding affinity, indicating their potential for further in-vivo studies. It is notable that novel compounds of both oxazolones and Imidazolone series exhibited antioxidant potential with maximum percentage inhibition of 75.9 (IC50 12.9 ± 0.0573 µM/mL) by compound 2d while compound 2a showed AChE inhibitory potential with maximum %age inhibition of 75.49 (IC50 7.8 ± 0.0218 µM/mL).Communicated by Ramaswamy H. Sarma.

17.
Inflammation ; 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38289578

RESUMEN

Methotrexate (MTX)-induced intestinal mucositis (IM) is a common side effect in cancer treatment that impairs the immune system and gut microbes, resulting in loss of mucosal integrity and gut barrier dysfunction. The quality of life and outcomes of treatment are compromised by IM. The present study was designed to investigate the mucoprotective potential of the benzimidazole derivative N-{4-[2-(4-methoxyphenyl)-1H-benzimidazole-1-sulfonyl] phenyl} acetamide (B8) on MTX-induced IM in mice. IM was induced by a single dose of MTX in mice and assessed by physical manifestations as well as biochemical, oxidative, histological, and inflammatory parameters. B8 (1, 3, 9 mg/kg) significantly reduced diarrhea score, mitigated weight loss, increased feed intake and, survival rate in a dose-dependent manner. Notably, B8 exhibited a mucoprotective effect evident through the mitigation of villus atrophy, crypt hypoplasia, diminished crypt mitotic figures, mucin depletion, and oxidative stress markers (GSH, SOD, MDA, and catalase concentration). Gene expression analysis revealed that B8 downregulated the mRNA expression of tumor necrosis factor-α (TNF-α), cyclooxygenase-2 (COX-2), interleukin-6 (IL-6), IL-1ß, and nuclear factor-κB (NF-κB) and concurrently upregulated IL-10 expression in contrast to the MTX group. Further, B8 significantly improved the luminal microflora profile by augmenting the growth of Lactobacillus spp. and reducing the number of pathogenic bacteria (E. coli). Additionally, the enzyme-linked immunoassay showed that B8 decreased the levels of pro-inflammatory cytokines. Our findings suggest that B8 had mucoprotective effects against MTX-induced IM and could be used as an adjunct in chemotherapy to deter this side effect.

18.
ACS Omega ; 8(11): 9785-9796, 2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36969428

RESUMEN

2-Mercaptobenzothiazole and its derivatives are widely known for their diverse biological activities, particularly antimicrobial and anticancer potential. In the present study, a series of new hybrid compounds consisting of 2-mercaptobenzothiazole and different aryl amines 2(a-j) were synthesized and characterized by Fourier transform infrared (FTIR), 1H NMR, and 13C NMR spectral data. The synthesized compounds were screened for in vitro antibacterial activities through agar well diffusion assay. Among the series, 2b, 2c, and 2i exhibited significant antibacterial activity comparable to the standard drug levofloxacin. Based on their antibacterial potential, these compounds were further tested for their antibiofilm activity. All of the three compounds showed promising antibiofilm potential, even better than the standard drug cefadroxil at 100 µg/100 µL concentration. Molecular docking studies were performed to explore the antibacterial mechanism of these compounds. Strikingly, the molecule 2i shared the same hydrophobic pockets as those of levofloxacin in case of bacterial kinases and DNA gyrases. In addition, 2i exhibited satisfactory antibiofilm activity in comparison to the standard. Our study therefore suggested that the synthetic compound 2i possesses remarkable antibacterial activity and may serve as a lead molecule for the discovery of potent antibacterial agents.

19.
J Biomol Struct Dyn ; 41(24): 15535-15548, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37021341

RESUMEN

A new class of azole-derived hemiaminal ethers is designed as acetylcholinesterase (AChE) inhibitors. The synthesized compounds exhibited remarkable inhibitory activity against acetylcholine. Chiral hemiaminals (3d and 3i) based on (R)-menthoxymethyl group exhibit excellent inhibition with IC50 values of 0.983 ± 1.41 and 1.154 ± 0.89 µM. Similarly, butoxymethyl derivatives 3a, 3f and 3h, also showed promising inhibition comparable to the standard drug, Donepezil. In silico studies were performed to understand the mode of interactions with the target proteins, where menthoxymethyl azoles 3d and 3i demonstrated the highest docking scores. Molecular dynamics simulations displayed the stable ligand-protein complex of 3i with effective binding interactions. The bioavailability and pharmacokinetic parameterssupported the suitability of these small molecule inhibitors to develop cost-effective drug leads for Alzheimer's disease (AD). MTT assay substantiated the non-cytotoxic nature of the compounds. The synthesized compounds are extensively characterized by 1H NMR, 13C NMR and mass spectral data and SC-XRD.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Enfermedad de Alzheimer , Inhibidores de la Colinesterasa , Humanos , Inhibidores de la Colinesterasa/química , Acetilcolinesterasa/química , Azoles/farmacología , Rayos X , Éteres , Simulación del Acoplamiento Molecular , Enfermedad de Alzheimer/tratamiento farmacológico , Relación Estructura-Actividad
20.
Heliyon ; 9(11): e22183, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38053851

RESUMEN

Heterocyclic amines and acetamide derivatives are known for their chemotherapeutic potential. Hence, in the present study, morpholine was taken as a principal product and novel morpholine derivatives were designed, formulated, characterized, and screened for the mechanism of inhibition of carbonic anhydrase and their anticancer potential. In addition, in vitro inhibition of hypoxia-inducible factor-1 (HIF-1) protein was also investigated. Results revealed that compounds 1c, 1d, and 1h possessed significant inhibitory activities against carbonic anhydrase with IC50 of 8.80, 11.13, and 8.12 µM, respectively. Interestingly, the carbonic anhydrase inhibitory activity of compound 1h was comparable with that of standard acetazolamide (IC50 7.51 µM). The compounds 1h and 1i significantly inhibited the proliferation of ovarian cancer cell line ID8 with IC50 of 9.40, and 11.2 µM, respectively while the standard cisplatin exhibited an IC50 8.50 µM. In addition, compounds 1c, 1b, 1h and 1i also exhibited significant inhibitory effects on HIF-1α. In conclusion, we report first time the biological potential of morpholine based compounds against ovarian cancer and HIF-1α that may serve as lead molecules for drug discovery.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA