Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Genomics ; 115(3): 110597, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36871637

RESUMEN

Liver fibrosis is the result of the accumulation of extracellular matrix (ECM) that cannot be cleared. Bioinformatic analysis showed that LINC01711 was significantly overexpressed in hepatic fibrosis. The regulatory mechanism of LINC01711 was clarified and confirmed the transcription factors associated with LINC01711. Functionally, LINC01711 promoted LX-2 cell proliferation and migration, indicating that it exerts effects promoting the progression of hepatic fibrosis. Mechanistically, LINC01711 increased the expression of xylosyltransferase 1 (XYLT1), which is an important protein for constructing the ECM. We also confirmed that SNAI1 activated LINC01711 transcription. Taking these findings together, LINC01711 was induced by SNAI1 and promoted the proliferation and migration of LX-2 cells via XYLT1. This study will help to understand the function of LINC01711 and its regulatory mechanism in hepatic fibrosis.


Asunto(s)
ARN Largo no Codificante , Humanos , ARN Largo no Codificante/genética , Cirrosis Hepática , Proliferación Celular , Factores de Transcripción , Matriz Extracelular/metabolismo , Factores de Transcripción de la Familia Snail/genética
2.
Am J Hum Genet ; 104(1): 35-44, 2019 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-30554721

RESUMEN

Baratela-Scott syndrome (BSS) is a rare, autosomal-recessive disorder characterized by short stature, facial dysmorphisms, developmental delay, and skeletal dysplasia caused by pathogenic variants in XYLT1. We report clinical and molecular investigation of 10 families (12 individuals) with BSS. Standard sequencing methods identified biallelic pathogenic variants in XYLT1 in only two families. Of the remaining cohort, two probands had no variants and six probands had only a single variant, including four with a heterozygous 3.1 Mb 16p13 deletion encompassing XYLT1 and two with a heterozygous truncating variant. Bisulfite sequencing revealed aberrant hypermethylation in exon 1 of XYLT1, always in trans with the sequence variant or deletion when present; both alleles were methylated in those with no identified variant. Expression of the methylated XYLT1 allele was severely reduced in fibroblasts from two probands. Southern blot studies combined with repeat expansion analysis of genome sequence data showed that the hypermethylation is associated with expansion of a GGC repeat in the XYLT1 promoter region that is not present in the reference genome, confirming that BSS is a trinucleotide repeat expansion disorder. The hypermethylated allele accounts for 50% of disease alleles in our cohort and is not present in 130 control subjects. Our study highlights the importance of investigating non-sequence-based alterations, including epigenetic changes, to identify the missing heritability in genetic disorders.


Asunto(s)
Anomalías Múltiples/genética , Metilación de ADN/genética , Epigénesis Genética/genética , Exones/genética , Mutación , Pentosiltransferasa/genética , Expansión de Repetición de Trinucleótido/genética , Alelos , Southern Blotting , Estudios de Cohortes , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Linaje , Sulfitos/metabolismo , Síndrome , UDP Xilosa Proteína Xilosiltransferasa
3.
BMC Pediatr ; 22(1): 63, 2022 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-35081921

RESUMEN

BACKGROUND: Desbuquois dysplasia type 2 (DBQD2) is an infrequent dysplasia with a wide range of symptoms, including facial deformities, growth retardation and short long bones. It is an autosomal recessive disorder caused by mutations in the XYLT1 gene that encodes xylosyltransferase-1. CASE PRESENTATION: We studied an aborted fetus from Iranian non-consanguineous parents who was therapeutically aborted at 19 weeks of gestation. Ultrasound examinations at 18 weeks of gestation revealed growth retardation in her long bones and some facial problems. Whole-exome sequencing was performed on the aborted fetus which revealed compound heterozygous XYLT1 mutations: c.742G>A; p.(Glu248Lys) and c.1537 C>A; p.(Leu513Met). Sanger sequencing and segregation analysis confirmed the compound heterozygosity of these variants in XYLT1. CONCLUSION: The c.1537 C>A; p.(Leu513Met) variant has not been reported in any databases so far and therefore is novel. This is the third compound heterozygote report in XYLT1 and further supports the high heterogeneity of this disease.


Asunto(s)
Enanismo , Polidactilia , Feto Abortado , Anomalías Craneofaciales , Enanismo/diagnóstico , Femenino , Feto/diagnóstico por imagen , Heterocigoto , Humanos , Irán , Inestabilidad de la Articulación , Mutación , Osificación Heterotópica , Polidactilia/diagnóstico , Polidactilia/genética
4.
Clin Genet ; 95(6): 713-717, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30847897

RESUMEN

Desbuquois dysplasia (DBQD) is an autosomal recessive heterogeneous disorder characterized by joint laxity and skeletal changes, including a distinctive monkey-wrench appearance of the femora, advanced carpal ossification, and abnormal patterning of the preaxial digits. Two genes for DBQD (CANT1 encoding calcium-activated nucleotidase-1 and XYLT1 encoding xylosyltransferase-1) have been reported. We propose a novel gene for neonatal short limb dysplasia resembling DBQD, based on the phenotype and genotype of two affected siblings. The affected boy and girl died in early infancy and shortly after birth, respectively. The clinical hallmarks included mid-face hypoplasia, thoracic hypoplasia with respiratory failure, very short stature (approximately -7 SD of birth length) with mesomelic shortening of the limbs, and multiple dislocations of the large joints. Radiological examinations showed prominent lesser trochanter, flared metaphyses of the long bones, and joint dislocations. The affected boy had preaxial digital hypoplasia, and the affected girl showed overlapping and syndactyly of the preaxial digits. Molecular analyses of the girl showed compound heterozygous variants in FAM20B (NM_014864: c.174_178delTACCT p.T59Afs*19/c.1038delG p.N347Mfs*4). FAM20B encodes glycosaminoglycan xylosylkinase, which acts downstream of xylosyltransferase-1. Given the fact that FAM20B deficiency causes skeletal phenotypes in mice and zebrafish, these variants are highly probable to be pathogenic.


Asunto(s)
Anomalías Craneofaciales/genética , Enanismo/genética , Extremidades/patología , Inestabilidad de la Articulación/genética , Osificación Heterotópica/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Polidactilia/genética , Anomalías Craneofaciales/diagnóstico por imagen , Anomalías Craneofaciales/enzimología , Anomalías Craneofaciales/patología , Enanismo/diagnóstico por imagen , Enanismo/enzimología , Enanismo/patología , Extremidades/anatomía & histología , Extremidades/diagnóstico por imagen , Extremidades/embriología , Femenino , Glicosaminoglicanos/genética , Glicosaminoglicanos/metabolismo , Heterocigoto , Humanos , Recién Nacido , Inestabilidad de la Articulación/diagnóstico por imagen , Inestabilidad de la Articulación/enzimología , Inestabilidad de la Articulación/patología , Masculino , Mutación , Osificación Heterotópica/diagnóstico por imagen , Osificación Heterotópica/enzimología , Osificación Heterotópica/patología , Fenotipo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Polidactilia/diagnóstico por imagen , Polidactilia/enzimología , Polidactilia/patología , Radiografía , Secuenciación del Exoma
5.
Am J Physiol Renal Physiol ; 313(2): F319-F325, 2017 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-28446462

RESUMEN

The current paradigm regarding sodium handling in animals and humans postulates that total body sodium is regulated predominately via regulation of extracellular volume. Active sodium storage independent of volume retention is thought to be negligible. However, studies in animals, hypertensive patients, and healthy humans suggest water-free storage of sodium in skin. We hypothesized that tissue sodium concentrations ([Na]T) found in humans vary and reflect regulation due to variable glycosaminoglycan content due to variable expression of XYLT-1. Twenty seven patients on dialysis and 21 living kidney transplant donors free of clinically detectable edema were studied. During surgery, abdominal skin, muscle, and arteries were biopsied. [Na]T was determined by inductively coupled plasma-optical emission spectrometry, semiquantitative glycosaminoglycan content with Alcian stain, and XYLT-1 expression by real-time PCR. [Na]T of arteries were ranging between 0.86 and 9.83 g/kg wet wt and were significantly higher in arteries (4.52 ± 1.82 g/kg) than in muscle (2.03 ± 1.41 g/kg; P < 0.001) or skin (3.24 ± 2.26 g/kg wet wt; P = 0.038). For individual patients [Na]T correlated for skin and arterial tissue (r = 0.440, P = 0.012). [Na]T also correlated significantly with blinded semiquantitative analysis of glycosaminoglycans staining (r = 0.588, P = 0.004). In arteries XYLT-1 expression was also correlated with [Na]T (r = 0.392, P = 0.003). Our data confirm highly variable [Na]T in human skin and muscle and extend this observation to [Na]T in human arteries. These data support the hypothesis of water-independent sodium storage via regulated glycosaminoglycan synthesis in human tissues, including arteries.


Asunto(s)
Músculos Abdominales/química , Arterias Epigástricas/química , Glicosaminoglicanos/análisis , Enfermedades Renales/metabolismo , Piel/química , Sodio/análisis , Adulto , Anciano , Biopsia , Estudios de Casos y Controles , Línea Celular , Femenino , Fibroblastos/enzimología , Humanos , Enfermedades Renales/diagnóstico , Enfermedades Renales/terapia , Masculino , Persona de Mediana Edad , Ósmosis , Pentosiltransferasa/genética , Pentosiltransferasa/metabolismo , Diálisis Renal , Espectrofotometría/métodos , UDP Xilosa Proteína Xilosiltransferasa
6.
Am J Med Genet A ; 173(7): 1773-1781, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28462984

RESUMEN

Desbuquois syndrome is a heterogeneous rare type of skeletal dysplasia with a prevalence of less than 1 in 1,000,000 individuals. It is characterized by short-limbed dwarfism, dysmorphic facial features, and severe joint laxity. Two types have been recognized depending on the presence of distinctive carpal and phalangeal features. Mutations in the calcium activated nucleotidase 1 (CANT1) have been found to be responsible for type I and lately, for the Kim type of Desbuquois dysplasia. In addition, a number of Desbuquois dysplasia type II patients have been attributed to mutations in xylosyltransferase 1, encoded by the XYLT1 gene, an enzyme that catalyzes the transfer of UDP-xylose (a marker of cartilage destruction) to serine residues of an acceptor protein, essential for the biosynthesis of proteoglycans. We report here a patient with features consistent with Desbuquois dysplasia II including short long bones, flat face, mild monkey wrench appearance of the femoral heads. Whole exome sequencing revealed a novel homozygous duplication of a single nucleotide in XYLT1 gene (c.2169dupA). This variant is predicted to result in a frame-shift and stop codon p.(Val724Serfs*10) within the xylosyltransferase catalytic domain. Immunoflourescence staining of HeLa cells transfected with mutated XYLT1 plasmids constructs of the current as well as the previously reported missense mutations (c.1441C>T, p.(Arg481Trp) and c.1792C>T, p.(Arg598Cys)), revealed aberrant subcellular localization of the enzyme compared to wild-type, suggesting endoplasmic reticulum retention of these mutants as the likely mechanism of disease.

7.
Am J Med Genet A ; 170A(2): 510-514, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26601923

RESUMEN

We report on a boy with a neonatal short limb skeletal dysplasia with serious medical complications, associated with one intragenic and one complete deletion of XYLT1. XYLT1 mutations have recently been reported as causative in recessive Desbuquois skeletal dysplasia (DBSD), but the skeletal features in our patient do not fit this diagnosis. It is possible that the phenotype of XYLT1 mutations extends to more aspecific types of short limb skeletal dysplasias and not to DBSD alone.


Asunto(s)
Extremidades/embriología , Anomalías Musculoesqueléticas/genética , Osteocondrodisplasias/genética , Pentosiltransferasa/genética , Eliminación de Secuencia/genética , Extremidades/patología , Humanos , Recién Nacido , Masculino , Anomalías Musculoesqueléticas/diagnóstico , Osteocondrodisplasias/diagnóstico , Fenotipo , UDP Xilosa Proteína Xilosiltransferasa
8.
Dev Biol ; 385(1): 67-82, 2014 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-24161523

RESUMEN

The long bones of the vertebrate body are built by the initial formation of a cartilage template that is later replaced by mineralized bone. The proliferation and maturation of the skeletal precursor cells (chondrocytes) within the cartilage template and their replacement by bone is a highly coordinated process which, if misregulated, can lead to a number of defects including dwarfism and other skeletal deformities. This is exemplified by the fact that abnormal bone development is one of the most common types of human birth defects. Yet, many of the factors that initiate and regulate chondrocyte maturation are not known. We identified a recessive dwarf mouse mutant (pug) from an N-ethyl-N-nitrosourea (ENU) mutagenesis screen. pug mutant skeletal elements are patterned normally during development, but display a ~20% length reduction compared to wild-type embryos. We show that the pug mutation does not lead to changes in chondrocyte proliferation but instead promotes premature maturation and early ossification, which ultimately leads to disproportionate dwarfism. Using sequence capture and high-throughput sequencing, we identified a missense mutation in the Xylosyltransferase 1 (Xylt1) gene in pug mutants. Xylosyltransferases catalyze the initial step in glycosaminoglycan (GAG) chain addition to proteoglycan core proteins, and these modifications are essential for normal proteoglycan function. We show that the pug mutation disrupts Xylt1 activity and subcellular localization, leading to a reduction in GAG chains in pug mutants. The pug mutant serves as a novel model for mammalian dwarfism and identifies a key role for proteoglycan modification in the initiation of chondrocyte maturation.


Asunto(s)
Huesos/embriología , Condrocitos/metabolismo , Osteogénesis/genética , Pentosiltransferasa/fisiología , Animales , Secuencia de Bases , Huesos/metabolismo , Diferenciación Celular/genética , Proliferación Celular , Enanismo/genética , Factores de Crecimiento de Fibroblastos/metabolismo , Proteínas Hedgehog/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación Missense , Proteína Relacionada con la Hormona Paratiroidea/metabolismo , Pentosiltransferasa/genética , Análisis de Secuencia de ADN , Transducción de Señal/genética , UDP Xilosa Proteína Xilosiltransferasa
9.
Eur J Endocrinol ; 189(3): 409-421, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37638789

RESUMEN

IMPORTANCE AND OBJECTIVE: The identification of myokines susceptible to improve glucose homeostasis following bariatric surgery could lead to new therapeutic approaches for type 2 diabetes. METHODS: Changes in the homeostasis model assessment (HOMA) test were assessed in patients before and 3 months after bariatric surgery. Changes in myokines expression and circulating levels were assessed using real-time quantitative polymerase chain reaction (RT-qPCR) and enzyme-linked immunosorbent assay (ELISA). Myokines known to regulate glucose homeostasis were identified using literature (targeted study) and putative myokines using RNA-sequencing (untargeted study). A linear regression analysis adjusted for age and sex was used to search for associations between changes in the HOMA test and changes in myokines. RESULTS: In the targeted study, brain-derived neurotrophic factor (BDNF) expression was upregulated (+30%, P = .006) while BDNF circulating levels were decreased (-12%, P = .001). Upregulated BDNF expression was associated with decreased HOMA of insulin resistance (HOMA-IR) (adjusted estimate [95% confidence interval {CI}]: -0.51 [-0.88 to -0.13], P = .010). Decreased BDNF serum levels were associated with decreased HOMA of beta-cell function (HOMA-B) (adjusted estimate [95% CI] = 0.002 [0.00002-0.0031], P = .046). In the untargeted study, upregulated putative myokines included XYLT1 (+64%, P < .001), LGR5 (+57, P< .001), and SPINK5 (+46%, P < .001). Upregulated LGR5 was associated with decreased HOMA-IR (adjusted estimate [95% CI] = -0.50 [-0.86 to -0.13], P = .009). Upregulated XYLT1 and SPINK5 were associated with increased HOMA of insulin sensitivity (HOMA-S) (respectively, adjusted estimate [95% CI] = 109.1 [28.5-189.8], P = .009 and 16.5 [0.87-32.19], P = .039). CONCLUSIONS: Improved glucose homeostasis following bariatric surgery is associated with changes in myokines expression and circulating levels. In particular, upregulation of BDNF, XYLT1, SPINK5, and LGR5 is associated with improved insulin sensitivity. These results suggest that these myokines could contribute to improved glucose homeostasis following bariatric surgery. STUDY REGISTRATION: NCT03341793 on ClinicalTrials.gov (https://clinicaltrials.gov/).


Asunto(s)
Cirugía Bariátrica , Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Humanos , Factor Neurotrófico Derivado del Encéfalo , Diabetes Mellitus Tipo 2/cirugía , Glucosa
10.
Poult Sci ; 102(11): 103031, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37716235

RESUMEN

Body weight of chicken is a typical quantitative trait, which shows phenotypic variations due to selective breeding. Despite some QTL loci have been obtained, the body weight of native chicken breeds in different geographic regions varies greatly, its genetic basis remains unresolved questions. To address this issue, we analyzed 117 Chinese indigenous chickens from 10 breeds (Huiyang Bearded, Xinhua, Hotan Black, Baicheng You, Liyang, Yunyang Da, Jining Bairi, Lindian, Beijing You, Tibetan). We applied fixation index (FST) analysis to find selected genomic regions and genes associated with body weight traits. Our study suggests that NELL1, XYLT1, and NCAPG/LCORL genes are strongly selected in the body weight trait of Chinese indigenous chicken breeds. In addition, the IL1RAPL1 gene was strongly selected in large body weight chickens, while the PCDH17 and CADM2 genes were strongly selected in small body weight chickens. This result suggests that the patterns of genetic variation of native chicken and commercial chicken, and/or distinct local chicken breeds may follow different evolutionary mechanisms.


Asunto(s)
Pollos , Animales , Peso Corporal/genética , Pollos/genética , Genómica , Metagenómica , Polimorfismo de Nucleótido Simple , China , Selección Artificial/genética
11.
Genes (Basel) ; 10(9)2019 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-31438591

RESUMEN

The term linkeropathies (LKs) refers to a group of rare heritable connective tissue disorders, characterized by a variable degree of short stature, skeletal dysplasia, joint laxity, cutaneous anomalies, dysmorphism, heart malformation, and developmental delay. The LK genes encode for enzymes that add glycosaminoglycan chains onto proteoglycans via a common tetrasaccharide linker region. Biallelic variants in XYLT1 and XYLT2, encoding xylosyltransferases, are associated with Desbuquois dysplasia type 2 and spondylo-ocular syndrome, respectively. Defects in B4GALT7 and B3GALT6, encoding galactosyltransferases, lead to spondylodysplastic Ehlers-Danlos syndrome (spEDS). Mutations in B3GAT3, encoding a glucuronyltransferase, were described in 25 patients from 12 families with variable phenotypes resembling Larsen, Antley-Bixler, Shprintzen-Goldberg, and Geroderma osteodysplastica syndromes. Herein, we report on a 13-year-old girl with a clinical presentation suggestive of spEDS, according to the 2017 EDS nosology, in whom compound heterozygosity for two B3GAT3 likely pathogenic variants was identified. We review the spectrum of B3GAT3-related disorders and provide a comparison of all LK patients reported up to now, highlighting that LKs are a phenotypic continuum bridging EDS and skeletal disorders, hence offering future nosologic perspectives.


Asunto(s)
Fenotipo del Síndrome de Antley-Bixler/genética , Aracnodactilia/genética , Enfermedades Óseas/congénito , Craneosinostosis/genética , Enanismo/genética , Glucuronosiltransferasa/genética , Síndrome de Marfan/genética , Mutación , Osteocondrodisplasias/genética , Fenotipo , Enfermedades Cutáneas Genéticas/genética , Adolescente , Fenotipo del Síndrome de Antley-Bixler/patología , Aracnodactilia/patología , Enfermedades Óseas/genética , Enfermedades Óseas/patología , Craneosinostosis/patología , Enanismo/patología , Femenino , Humanos , Síndrome de Marfan/patología , Osteocondrodisplasias/patología , Enfermedades Cutáneas Genéticas/patología
12.
J Dermatol Sci ; 79(1): 20-9, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25936869

RESUMEN

BACKGROUND: Biglycan (BGN) is a proteoglycan composed of a 42-kDa core protein and two glycosaminoglycan (GAG) chains, and known to be involved in structural, space-filling functions and many physiological regulations in the skin. OBJECTIVE: To investigate ultraviolet (UV) irradiation-induced changes of BGN protein and its GAG chain synthesis in cultured human dermal fibroblasts. METHODS: UV irradiation-induced or xylosyltransferase (XYLT) 1 siRNA-mediated smaller-sized protein bands detected by Western blot using BGN antibodies were identified as monoglycosylated forms of BGN, using BGN siRNA-mediated knockdown and chondroitinase ABC (ChABC). Differential activity of XYLT1 and 2 on BGN core protein was investigated by size shift of S42A- and S47A-BGN mutants to core protein size caused by XYLT1 siRNA transfection or UV irradiation. RESULTS: After UV irradiation, intact form of BGN protein (I-BGN) and core protein form were reduced in cultured fibroblasts, but other smaller-sized bands were observed to be increased. These smaller-sized ones were reduced by transfection of BGN siRNA, and shifted to the core protein size by treatment with ChABC, suggesting that they are defectively-glycosylated forms of BGN (D-BGN) protein. UV irradiation also decreased mRNA expression levels of XYLT1 and 2, which are responsible for initiation of GAG chain synthesis. UV-mediated reduction of XYLT1 expression was much stronger than that of XYLT2. Furthermore, siRNA-mediated down-regulation of XYLT1 resulted in the increase of D-BGN and the decrease of I-BGN, while down-regulation of XYLT2 resulted in no change of D-BGN and I-BGN, suggesting that the XYLT1 may react with both GAG-attaching serine sites of BGN; however, XYLT2 may prefer to react one of them. Another dermatan sulfate (DS) proteoglycan, decorin, showed no or a little change of its molecular weight by UV irradiation or XYLT1 siRNA transfection, suggesting that DS synthesis may not be a critical factor in formation of D-BGN. Co-transfection with XYLT1, 2 siRNAs and wild-type or mutant forms of BGN overexpression vectors revealed that S42A-BGN showed size reduction to core protein size by XYLT1 downregulation, but S47A-BGN did not, suggesting that XYLT2 can react only with S42 on BGN core protein. With UV irradiation, both S42A-BGN and S47A-BGN showed size reduction, which is probably because UV-caused downregulation of both XYLTs and overexpression condition resulted in incomplete glycosylation and secretion. CONCLUSIONS: UV irradiation-induced increase of BGN monoglycosylated forms in cultured human dermal fibroblasts is resulted from dominance of XYLT2 activity, which acts only at S42 on BGN core protein, caused by UV-mediated stronger reduction of XYLT1.


Asunto(s)
Biglicano/biosíntesis , Biglicano/genética , Glicosaminoglicanos/biosíntesis , Pentosiltransferasa/metabolismo , Rayos Ultravioleta , Células Cultivadas , Decorina/metabolismo , Regulación hacia Abajo/efectos de la radiación , Fibroblastos/metabolismo , Fibroblastos/efectos de la radiación , Silenciador del Gen , Glicosaminoglicanos/efectos de la radiación , Glicosilación/efectos de la radiación , Humanos , Peso Molecular , Pentosiltransferasa/genética , Pentosiltransferasa/efectos de la radiación , Biosíntesis de Proteínas/efectos de la radiación , ARN Mensajero/metabolismo , Fenómenos Fisiológicos de la Piel/efectos de la radiación , Xilosa/metabolismo , UDP Xilosa Proteína Xilosiltransferasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA