Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 269
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Biochem Biophys Res Commun ; 673: 175-178, 2023 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-37392481

RESUMEN

γ-conglutin (γ-C) is a hexameric glycoprotein accumulated in lupin seeds and has long been considered as a storage protein. Recently, it has been investigated for its possible postprandial glycaemic regulating action in human nutrition and for its physiological role in plant defence. The quaternary structure of γ-C results from the assembly of six monomers in reversible pH-dependent association/dissociation equilibrium. Our working hypothesis was that the γ-C hexamer is made up of glycosylated subunits in association with not-glycosylated isoforms, that seem to have 'escaped' the correct glycosylation process in the Golgi. Here we describe the isolation of not-glycosylated γ-C monomers in native condition by two in tandem lectin-based affinity chromatography and the characterization of their oligomerization capacity. We report, for the first time, the observation that a plant multimeric protein may be formed by identical polypeptide chains that have undergone different post-translational modifications. All obtained considered, the results strongly suggest that the not-glycosylated isoform can also take part in the oligomerization equilibrium of the protein.


Asunto(s)
Lupinus , Humanos , Lupinus/química , Lupinus/metabolismo , Glicosilación , Proteínas de Plantas/metabolismo , Glicoproteínas/metabolismo , Semillas/metabolismo , Isoformas de Proteínas/metabolismo
2.
Int J Mol Sci ; 24(8)2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-37108842

RESUMEN

Narrow-leafed lupin (NLL; Lupinus angustifolius L.) has multiple nutraceutical properties that may result from unique structural features of ß-conglutin proteins, such as the mobile arm at the N-terminal, a structural domain rich in α-helices. A similar domain has not been found in other vicilin proteins of legume species. We used affinity chromatography to purify recombinant complete and truncated (without the mobile arm domain, tß5 and tß7) forms of NLL ß5 and ß7 conglutin proteins. We then used biochemical and molecular biology techniques in ex vivo and in vitro systems to evaluate their anti-inflammatory activity and antioxidant capacity. The complete ß5 and ß7 conglutin proteins decreased pro-inflammatory mediator levels (e.g., nitric oxide), mRNA expression levels (iNOS, TNFα, IL-1ß), and the protein levels of pro-inflammatory cytokine TNF-α, interleukins (IL-1ß, IL-2, IL-6, IL-8, IL-12, IL-17, IL-27), and other mediators (INFγ, MOP, S-TNF-R1/-R2, and TWEAK), and exerted a regulatory oxidative balance effect in cells as demonstrated in glutathione, catalase, and superoxide dismutase assays. The truncated tß5 and tß7 conglutin proteins did not have these molecular effects. These results suggest that ß5 and ß7 conglutins have potential as functional food components due to their anti-inflammatory and oxidative cell state regulatory properties, and that the mobile arm of NLL ß-conglutin proteins is a key domain in the development of nutraceutical properties, making NLL ß5 and ß7 excellent innovative candidates as functional foods.


Asunto(s)
Lupinus , Lupinus/metabolismo , Suplementos Dietéticos
3.
Int J Mol Sci ; 24(14)2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37511532

RESUMEN

Under nutrient deficiency or starvation conditions, the mobilization of storage compounds during seed germination is enhanced to primarily supply respiratory substrates and hence increase the potential of cell survival. Nevertheless, we found that, under sugar starvation conditions in isolated embryonic axes of white lupin (Lupinus albus L.) and Andean lupin (Lupinus mutabilis Sweet) cultured in vitro for 96 h, the disruption of lipid breakdown occurs, as was reflected in the higher lipid content in the sugar-starved (-S) than in the sucrose-fed (+S) axes. We postulate that pexophagy (autophagic degradation of the peroxisome-a key organelle in lipid catabolism) is one of the reasons for the disruption in lipid breakdown under starvation conditions. Evidence of pexophagy can be: (i) the higher transcript level of genes encoding proteins of pexophagy machinery, and (ii) the lower content of the peroxisome marker Pex14p and its increase caused by an autophagy inhibitor (concanamycin A) in -S axes in comparison to the +S axes. Additionally, based on ultrastructure observation, we documented that, under sugar starvation conditions lipophagy (autophagic degradation of whole lipid droplets) may also occur but this type of selective autophagy seems to be restricted under starvation conditions. Our results also show that autophagy occurs at the very early stages of plant growth and development, including the cells of embryonic seed organs, and allows cell survival under starvation conditions.


Asunto(s)
Lupinus , Azúcares , Azúcares/metabolismo , Lupinus/metabolismo , Carbohidratos , Semillas/metabolismo , Autofagia , Lípidos
4.
Int J Mol Sci ; 24(15)2023 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-37569754

RESUMEN

The maturation of seeds is a process of particular importance both for the plant itself by assuring the survival of the species and for the human population for nutritional and economic reasons. Controlling this process requires a strict coordination of many factors at different levels of the functioning of genetic and hormonal changes as well as cellular organization. One of the most important examples is the transcriptional activity of the LAFL gene regulatory network, which includes LEAFY COTYLEDON1 (LEC1) and LEC1-LIKE (L1L) and ABSCISIC ACID INSENSITIVE3 (ABI3), FUSCA3 (FUS3), and LEC2 (LEAFY COTYLEDON2), as well as hormonal homeostasis-of abscisic acid (ABA) and gibberellins (GA) in particular. From the nutritional point of view, the key to seed development is the ability of seeds to accumulate large amounts of proteins with different structures and properties. The world's food deficit is mainly related to shortages of protein, and taking into consideration the environmental changes occurring on Earth, it is becoming necessary to search for a way to obtain large amounts of plant-derived protein while maintaining the diversity of its origin. Yellow lupin, whose storage proteins are conglutins, is one of the plant species native to Europe that accumulates large amounts of this nutrient in its seeds. In this article we have shown the key changes occurring in the developing seeds of the yellow-lupin cultivar Taper by means of modern molecular biology techniques, including RNA-seq, chromatographic techniques and quantitative PCR analysis. We identified regulatory genes fundamental to the seed-filling process, as well as genes encoding conglutins. We also investigated how exogenous application of ABA and GA3 affects the expression of LlLEC2, LlABI3, LlFUS3, and genes encoding ß- and δ-conglutins and whether it results in the amount of accumulated seed storage proteins. The research shows that for each species, even related plants, very specific changes can be identified. Thus the analysis and possibility of using such an approach to improve and stabilize yields requires even more detailed and extended research.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Lupinus , Humanos , Factores de Transcripción/metabolismo , Proteínas de Arabidopsis/genética , Lupinus/genética , Lupinus/metabolismo , Arabidopsis/genética , Ácido Abscísico/farmacología , Ácido Abscísico/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Semillas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo
5.
Molecules ; 28(22)2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-38005249

RESUMEN

Four species of lupin (white lupin, yellow lupin, blue lupin and Andean lupin) are widely cropped thanks to the excellent nutritional composition of their seeds: high protein content (28-48 g/100 g); good lipid content (4.6-13.5 g/100 g, but up to 20.0 g/100 g in Andean lupin), especially unsaturated triacylglycerols; and richness in antioxidant compounds like carotenoids, tocols and phenolics. Particularly relevant is the amount of free phenolics, highly bioaccessible in the small intestine. However, the typical bitter and toxic alkaloids must be eliminated before lupin consumption, hindering its diffusion and affecting its nutritional value. This review summarises the results of recent research in lupin composition for the above-mentioned three classes of antioxidant compounds, both in non-debittered and debittered seeds. Additionally, the influence of technological processes to further increase their nutritional value as well as the effects of food manufacturing on antioxidant content were scrutinised. Lupin has been demonstrated to be an outstanding raw material source, superior to most crops and suitable for manufacturing foods with good antioxidant and nutritional properties. The bioaccessibility of lupin antioxidants after digestion of ready-to-eat products still emerges as a dearth in current research.


Asunto(s)
Alcaloides , Lupinus , Antioxidantes/farmacología , Antioxidantes/metabolismo , Alcaloides/metabolismo , Semillas/química , Lupinus/metabolismo , Carotenoides/metabolismo , Fenoles/análisis
6.
Nat Prod Rep ; 39(7): 1423-1437, 2022 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-35302146

RESUMEN

Covering: up to 2022Quinolizidine alkaloids (QAs) are a class of alkaloids that accumulate in a variety of leguminous plants and have applications in the agricultural, pharmaceutical and chemical industries. QAs are notoriously present in cultivated lupins (Lupinus spp.) where they complicate the use of the valuable, high-protein beans due to their toxic properties and bitter taste. Compared to many other alkaloid classes, the biosynthesis of QAs is poorly understood, with only the two first pathway enzymes having been discovered so far. In this article, we review the different biosynthetic hypotheses that have been put forth in the literature (1988-2009) and highlight one particular hypothesis (1988) that agrees with the often ignored precursor feeding studies (1964-1994). Our focus is on the biosynthesis of the simple tetracyclic QA (-)-sparteine, from which many of the QAs found in lupins derive. We examine every pathway step on the way to (-)-sparteine and discuss plausible mechanisms, altogether proposing the involvement of 6-9 enzymes. Together with the new resources for gene discovery developed for lupins in the past few years, this review will contribute to the full elucidation of the QA pathway, including the identification and characterization of the missing pathway enzymes.


Asunto(s)
Alcaloides , Lupinus , Quinolizidinas , Esparteína , Lupinus/química , Lupinus/genética , Lupinus/metabolismo , Plantas/metabolismo , Esparteína/metabolismo
7.
Plant Cell Environ ; 45(3): 936-954, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34392550

RESUMEN

Soil contamination with toxic metalloids, such as arsenic, can represent a substantial human health and environmental risk. Some plants are thought to tolerate soil toxicity using root exudation, however, the nature of this response to arsenic remains largely unknown. Here, white lupin plants were exposed to arsenic in a semi-hydroponic system and their exudates were profiled using untargeted liquid chromatography-tandem mass spectrometry. Arsenic concentrations up to 1 ppm were tolerated and led to the accumulation of 12.9 µg As g-1 dry weight (DW) and 411 µg As g-1 DW in above-ground and belowground tissues, respectively. From 193 exuded metabolites, 34 were significantly differentially abundant due to 1 ppm arsenic, including depletion of glutathione disulphide and enrichment of phytochelatins and coumarins. Significant enrichment of phytochelatins in exudates of arsenic-treated plants was further confirmed using exudate sampling with strict root exclusion. The chemical tolerance toolkit in white lupin included nutrient acquisition metabolites as well as phytochelatins, the major intracellular metal-binding detoxification oligopeptides which have not been previously reported as having an extracellular role. These findings highlight the value of untargeted metabolite profiling approaches to reveal the unexpected and inform strategies to mitigate anthropogenic pollution in soils around the world.


Asunto(s)
Arsénico , Lupinus , Arsénico/metabolismo , Arsénico/toxicidad , Cumarinas , Exudados y Transudados/química , Exudados y Transudados/metabolismo , Lupinus/metabolismo , Fitoquelatinas/metabolismo , Raíces de Plantas/metabolismo , Plantas/metabolismo , Suelo/química
8.
Ann Bot ; 129(1): 101-112, 2022 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-34668958

RESUMEN

BACKGROUND AND AIMS: Initiation of cluster roots in white lupin (Lupinus albus) under phosphorus (P) deficiency requires auxin signalling, whereas flavonoids inhibit auxin transport. However, little information is available about the interactions between P deficiency and flavonoids in terms of cluster-root formation in white lupin. METHODS: Hydroponic and aeroponic systems were used to investigate the role of flavonoids in cluster-root formation, with or without 75 µm P supply. KEY RESULTS: Phosphorus-deficiency-induced flavonoid accumulation in cluster roots depended on developmental stage, based on in situ determination of fluorescence of flavonoids and flavonoid concentration. LaCHS8, which codes for a chalcone synthase isoform, was highly expressed in cluster roots, and silencing LaCHS8 reduced flavonoid production and rootlet density. Exogenous flavonoids suppressed cluster-root formation. Tissue-specific distribution of flavonoids in roots was altered by P deficiency, suggesting that P deficiency induced flavonoid accumulation, thus fine-tuning the effect of flavonoids on cluster-root formation. Furthermore, naringenin inhibited expression of an auxin-responsive DR5:GUS marker, suggesting an interaction of flavonoids and auxin in regulating cluster-root formation. CONCLUSIONS: Phosphorus deficiency triggered cluster-root formation through the regulation of flavonoid distribution, which fine-tuned an auxin response in the early stages of cluster-root development. These findings provide valuable insights into the mechanisms of cluster-root formation under P deficiency.


Asunto(s)
Lupinus , Flavonoides/metabolismo , Flavonoides/farmacología , Ácidos Indolacéticos/metabolismo , Lupinus/genética , Lupinus/metabolismo , Fósforo/metabolismo , Raíces de Plantas
9.
Physiol Plant ; 174(1): e13607, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34837246

RESUMEN

The low bioavailability of nutrients, especially nitrogen (N) and phosphorus (P), is one of the most limiting factors for crop production. In this study, under N- and P-free nutrient solution (-N-P), nodulating white lupin plants developed some nodules and analogous cluster root structures characterized by different morphological, physiological, and molecular responses than those observed upon single nutrient deficiency (strong acidification of external media, a better nutritional status than -N+P and +N-P plants). The multi-elemental analysis highlighted that the concentrations of nutrients in white lupin plants were mainly affected by P availability. Gene-expression analyses provided evidence of interconnections between N and P nutritional pathways that are active to promote N and P balance in plants. The root exudome was mainly characterized by N availability in nutrient solution, and, in particular, the absence of N and P in the nutrient solution triggered a high release of phenolic compounds, nucleosides monophosphate and saponines by roots. These morphological, physiological, and molecular responses result from a close interplay between N and P nutritional pathways. They contribute to the good development of nodulating white lupin plants when grown on N- and P-free media. This study provides evidence that limited N and P availability in the nutrient solution can promote white lupin-Bradyrhizobium symbiosis, which is favourable for the sustainability of legume production.


Asunto(s)
Bradyrhizobium , Lupinus , Bradyrhizobium/fisiología , Lupinus/metabolismo , Fijación del Nitrógeno/fisiología , Fósforo/metabolismo , Raíces de Plantas/metabolismo
10.
Physiol Plant ; 174(6): e13807, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36270730

RESUMEN

Manganese (Mn) is an essential microelement, but overaccumulation is harmful to many plant species. Most plants have similar minimal Mn requirements, but the tolerance to elevated Mn varies considerably. Mobilization of phosphate (P) by plant roots leads to increased Mn uptake, and shoot Mn levels have been reported to serve as an indicator for P mobilization efficiency in the presence of P deficiency. White lupin (Lupinus albus L.) mobilizes P and Mn with outstanding efficiency due to the formation of determinate cluster roots that release carboxylates. The high Mn tolerance of L. albus goes along with shoot Mn accumulation, but the molecular basis of this detoxification mechanism has been unknown. In this study, we identify LaMTP8.1 as the transporter mediating vacuolar sequestration of Mn in the shoot of white lupin. The function of Mn transport was demonstrated by yeast complementation analysis, in which LaMTP8.1 detoxified Mn in pmr1∆ mutant cells upon elevated Mn supply. In addition, LaMTP8.1 also functioned as an iron (Fe) transporter in yeast assays. The expression of LaMTP8.1 was particularly high in old leaves under high Mn stress. However, low P availability per se did not result in transcriptional upregulation of LaMTP8.1. Moreover, LaMTP8.1 expression was strongly upregulated under Fe deficiency, where it was accompanied by Mn accumulation, indicating a role in the interaction of these micronutrients in L. albus. In conclusion, the tonoplast-localized Mn transporter LaMTP8.1 mediates Mn detoxification in leaf vacuoles, providing a mechanistic explanation for the high Mn accumulation and Mn tolerance in this species.


Asunto(s)
Lupinus , Lupinus/genética , Lupinus/metabolismo , Manganeso/metabolismo , Saccharomyces cerevisiae/metabolismo , Vacuolas/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Raíces de Plantas/metabolismo
11.
Nutr Neurosci ; 25(3): 472-484, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32401697

RESUMEN

OBJECTIVES: Neuroinflammation is a complex inflammatory process in the central nervous system (CNS) where microglia may play a critical role. GPETAFLR is a peptide isolated from Lupinus angustifolius L. protein hydrolysates with functional activity in mononuclear phagocytes. However, it is unknown whether GPETAFLR has neuroprotective effects. METHODS: We analysed the potential anti-neuroinflammatory activity of GPETAFLR by using two different models of neuroinflammation: BV-2 microglial cells and mice with high-fat diet (HFD)-induced obesity. RESULTS: GPETAFLR hampered LPS-induced upregulation of pro-inflammatory and M1 marker genes in BV-2 cells. This effect was accompanied by an unchanged expression of anti-inflammatory IL-10 gene and by an increased expression of M2 marker genes. GPETAFLR also increased the transcriptional activity of M2 marker genes, while the microglia population remained unchanged in number and M1/M2 status in brain of mice with high-fat diet (HFD)-induced obesity. Furthermore, GPETAFLR counteracted HFD-induced downregulation of IL-10 and upregulation of pro-inflammatory markers in the mouse brain, both at gene and protein levels. DISCUSSION: This is the first report describing that a peptide from plant origin robustly restrained the pro-inflammatory activation of microglial cells in cultures and in brain. Our data suggest that GPETAFLR might be instrumental in maintaining CNS homeostasis by inhibiting neuroinflammation.


Asunto(s)
Lupinus , Microglía , Animales , Encéfalo/metabolismo , Citocinas/metabolismo , Inflamación/inducido químicamente , Lipopolisacáridos/farmacología , Lupinus/metabolismo , Ratones , Neuroprotección , Péptidos
12.
Plant Cell Rep ; 41(2): 415-430, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34851457

RESUMEN

KEY MESSAGE: 5-Hydroxyisoflavonoids, no 5-deoxyisoflavonoids, in Lupinus species, are due to lack of CHRs and Type II CHIs, and the key enzymes of isoflavonoid biosynthetic pathway in white lupin were identified. White lupin (Lupinus albus) is used as food ingredients owing to rich protein, low starch, and rich bioactive compounds such as isoflavonoids. The isoflavonoids biosynthetic pathway in white lupin still remains unclear. In this study, only 5-hydroxyisoflavonoids, but no 5-deoxyisoflavonoids, were detected in white lupin and other Lupinus species. No 5-deoxyisoflavonoids in Lupinus species are due to lack of CHRs and Type II CHIs. We further found that the CHI gene cluster containing both Type I and Type II CHIs possibly arose after the divergence of Lupinus with other legume clade. LaCHI1 and LaCHI2 identified from white lupin metabolized naringenin chalcone to naringenin in yeast and tobacco (Nicotiana benthamiana), and were bona fide Type I CHIs. We further identified two isoflavone synthases (LaIFS1 and LaIFS2), catalyzing flavanone naringenin into isoflavone genistein and also catalyzing liquiritigenin into daidzein in yeast and tobacco. In addition, LaG6DT1 and LaG6DT2 prenylated genistein at the C-6 position into wighteone. Two glucosyltransferases LaUGT1 and LaUGT2 metabolized genistein and wighteone into its 7-O-glucosides. Taken together, our study not only revealed that exclusive 5-hydroxyisoflavonoids do exist in Lupinus species, but also identified key enzymes in the isoflavonoid biosynthetic pathway in white lupin.


Asunto(s)
Enzimas/genética , Enzimas/metabolismo , Flavonoides/metabolismo , Lupinus/metabolismo , Proteínas de Plantas/genética , Oxidorreductasas de Alcohol/genética , Oxidorreductasas de Alcohol/metabolismo , Cromatografía Líquida de Alta Presión , Flavanonas/genética , Flavanonas/metabolismo , Flavonoides/análisis , Flavonoides/química , Flavonoides/genética , Regulación de la Expresión Génica de las Plantas , Genisteína/análisis , Genisteína/metabolismo , Liasas Intramoleculares/genética , Liasas Intramoleculares/metabolismo , Isoflavonas/análisis , Isoflavonas/metabolismo , Lupinus/genética , Oxigenasas/genética , Oxigenasas/metabolismo , Filogenia , Proteínas de Plantas/metabolismo
13.
J Sep Sci ; 45(2): 401-410, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34687586

RESUMEN

This study focused on the extraction, purification, and physicochemical characterization of γ-conglutin, a protein present in lupin seeds with properties of reducing blood glucose levels. Total protein was extracted with an alkaline-saline solvent, followed by isoelectric precipitation. Chromatographic purification of the precipitated fraction was performed using a cation exchange supermacroporous cryogel column. Electrophoresis of the eluted fraction from chromatography presented a single band of ∼48 kDa under non-reducing conditions (two bands of ∼30 and ∼17 kDa, under reducing conditions) confirming the success of the purification protocol. Liquid chromatography-tandem mass spectrometry analysis confirmed the identity of the protein as γ-conglutin. The purified γ-conglutin had an isoelectric point of 7.51, ß-sheets prevailing as a secondary structure, and denaturation temperature close to 68°C. The outcome of this work showed that γ-conglutin was obtained with a high degree of purity. The proposed purification protocol is simple and can be easily scaled up.


Asunto(s)
Lupinus , Cationes/análisis , Criogeles , Lupinus/química , Lupinus/metabolismo , Proteínas de Plantas/análisis , Semillas/química
14.
Int J Mol Sci ; 23(3)2022 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-35163603

RESUMEN

We recently showed that yellow lupine is highly sensitive to soil water deficits since this stressor disrupts nodule structure and functioning, and at the same time triggers flower separation through abscission zone (AZ) activation in the upper part of the plant. Both processes require specific transformations including cell wall remodeling. However, knowledge about the involvement of particular cell wall elements in nodulation and abscission in agronomically important, nitrogen-fixing crops, especially under stressful conditions, is still scarce. Here, we used immuno-fluorescence techniques to visualize dynamic changes in cell wall compounds taking place in the root nodules and flower AZ of Lupinus luteus following drought. The reaction of nodules and the flower AZ to drought includes the upregulation of extensins, galactans, arabinans, xylogalacturonan, and xyloglucans. Additionally, modifications in the localization of high- and low-methylated homogalacturonans and arabinogalactan proteins were detected in nodules. Collectively, we determined for the first time the drought-associated modification of cell wall components responsible for their remodeling in root nodules and the flower AZ of L. luteus. The involvement of these particular molecules and their possible interaction in response to stress is also deeply discussed herein.


Asunto(s)
Pared Celular/metabolismo , Flores/metabolismo , Lupinus/metabolismo , Nódulos de las Raíces de las Plantas/metabolismo , Deshidratación/metabolismo
15.
Int J Mol Sci ; 23(16)2022 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-36012274

RESUMEN

Phosphorus (P) deficiency heterogeneously affected plant nutritional status and physiological performance, ultimately leading to a severe yield reduction. A few putative long non-coding RNAs (lncRNAs) responding to P-starvation in the model crops Arabidopsis thaliana and Oryza sativa have been characterized. White lupin (Lupinus albus) is of prime importance, and is a legume with increasing agronomic value as a protein crop as it exhibits extreme tolerance to nutrient deficiency, particularly P deficiency. Despite its adapted nature to P deficiency, nothing is known about low P-induced lncRNAs in white lupin roots. To address this issue, we identified 39,840 mRNA and 2028 lncRNAs in the eight developmental stages of white lupin root (S0-S7 and lateral root, LR) grown under P deficiency. From these 2028 lncRNAs, 1564 were intergenic and 464 natural antisense intergenic transcript (NAT) lncRNAs. We further predicted six potential targets of miRNAs with twelve lncRNAs, which may regulate P-deficiency-related processes. Moreover, the weighted gene co-expression network analysis (WGCNA) revealed seven modules that were correlated with the expression pattern of lncRNAs. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed 606 GO terms and 27 different pathways including signal transduction, energy synthesis, detoxification, and Pi transport. In addition, we screened 13 putative lncRNAs that showed a distinct expression pattern in each root, indicating their role in the P deficiency regulatory network. Therefore, white lupin may be a reference legume to characterize P-deficiency-responsive novel lncRNAs, which would highlight the role of lncRNAs in the regulation of plant responses to P deficiency.


Asunto(s)
Arabidopsis , Lupinus , ARN Largo no Codificante , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Lupinus/metabolismo , Fósforo/metabolismo , Raíces de Plantas/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
16.
Molecules ; 27(24)2022 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-36557904

RESUMEN

Among grain pulses, lupins have recently gained considerable interest for a number of attractive nutritional attributes relating to their high protein and dietary fiber and negligible starch contents. The seeds of Lupinus albus (cv. Multitalia and Luxor, and the Modica ecotype); L. luteus (cv. Dukat, Mister, and Taper); and L. angustifolius (cv. Sonet) analyzed in this study were deposited within the germplasm collection of the Research Centre for Cereal and Industrial Crops of Acireale and were sowed in East Sicily in 2013/14. The collected seeds were analyzed for their multielemental micro- and macronutrient profiles, resulting in a wide variability between genotypes. Lupin seed flour samples were subjected to a defatting process using supercritical CO2, with oil yields dependent on the species and genotype. We determined the fatty acid profile and tocopherol content of the lupin oil samples, finding that the total saturated fatty acid quantities of different samples were very close, and the total tocopherol content was about 1500.00 µg/g FW. The proteomic analysis of the defatted lupin seed flours showed substantial equivalence between the cultivars of the same species of Lupinus albus and L. luteus. Moreover, the L. angustifolius proteome map showed the presence of additional spots in comparison to L. albus, corresponding to α-conglutins. Lupin, in addition to being a good source of mineral elements, also contributes vitamin E and, thanks to the very high content of gamma-tocopherols, demonstrates powerful antioxidant activity.


Asunto(s)
Lupinus , Lupinus/genética , Lupinus/metabolismo , Proteómica , Ácidos Grasos/metabolismo , Nutrientes , Semillas/genética , Semillas/metabolismo , Genotipo , Tocoferoles/metabolismo
17.
J Sci Food Agric ; 102(12): 5055-5064, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33709392

RESUMEN

BACKGROUND: The increasing importance of plant-based proteins in the food sector makes a reliable compositional analysis of plant-based high-protein ingredients a necessity. Specifically, the quantification of short-chain carbohydrates is relevant for multiple areas, including food product development, food labelling and fundamental food chemistry and food technology research. Commonly used extraction procedures for subsequent high-performance liquid chromatographic separation and quantification of short-chain carbohydrates have been discussed controversially regarding a range of complications that can potentially lead to inaccurate sugar determination. The present study compares the sugar levels in wheat flour and wholemeal wheat flour determined with different aqueous and ethanolic extraction procedures. These procedures included measures to prevent enzyme activity and microbial growth, which represent two of the most relevant challenges in sugar extraction from food samples. RESULTS: Differences in sugar levels (sum of sucrose/maltose, glucose and fructose) as high as 1.8% dry matter (wheat flour) were observed between the employed extraction procedures. Ethanolic extraction (80% ethanol in ultrapure water) with the use of the antimicrobial agent sodium azide but without Carrez clarification was identified as most promising for sugar determination in plant-based high-protein ingredients. CONCLUSION: A screening of high-protein ingredients derived from cereals (wheat gluten), pseudocereals (quinoa, amaranth, buckwheat) and legumes (soy, pea, lupin, lentil, carob, chickpea, faba bean) concerning their levels of sucrose, maltose, glucose and fructose confirmed the applicability of the chosen extraction procedure. © 2021 Society of Chemical Industry.


Asunto(s)
Harina , Lupinus , Carbohidratos/análisis , Cromatografía Líquida de Alta Presión/métodos , Etanol , Harina/análisis , Fructosa/análisis , Glucosa/análisis , Lupinus/metabolismo , Maltosa , Proteínas de Plantas/metabolismo , Sacarosa/análisis , Azúcares , Triticum/metabolismo
18.
BMC Microbiol ; 21(1): 320, 2021 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-34798831

RESUMEN

BACKGROUND: Tetragenococcus (T.) halophilus can be isolated from a variety of fermented foods, such as soy sauce, different soy pastes, salted fish sauce and from cheese brine or degraded sugar beet thick juice. This species contributes by the formation of short chain acids to the flavor of the product. Recently, T. halophilus has been identified as a dominant species in a seasoning sauce fermentation based on koji made with lupine seeds. RESULTS: In this study we characterized six strains of T. halophilus isolated from lupine moromi fermentations in terms of their adaptation towards this fermentation environment, salt tolerance and production of biogenic amines. Phylogenic and genomic analysis revealed three distinctive lineages within the species T. halophilus with no relation to their isolation source, besides the lineage of T. halophilus subsp. flandriensis. All isolated strains from lupine moromi belong to one lineage in that any of the type strains are absent. The strains form lupine moromi could not convincingly be assigned to one of the current subspecies. Taken together with strain specific differences in the carbohydrate metabolism (arabinose, mannitol, melibiose, gluconate, galactonate) and amino acid degradation pathways such as arginine deiminase pathway (ADI) and the agmatine deiminase pathway (AgDI) the biodiversity in the species of T. halophilus is greater than expected. Among the new strains, some strains have a favorable combination of traits wanted in a starter culture. CONCLUSIONS: Our study characterized T. halophilus strains that were isolated from lupine fermentation. The lupine moromi environment appears to select strains with specific traits as all of the strains are phylogenetically closely related, which potentially can be used as a starter culture for lupine moromi. We also found that the strains can be clearly distinguished phylogenetically and phenotypically from the type strains of both subspecies T. halophilus subsp. halophilus and T. halophilus subsp. flandriensis.


Asunto(s)
Enterococcaceae/aislamiento & purificación , Enterococcaceae/metabolismo , Lupinus/microbiología , Biodiversidad , Enterococcaceae/clasificación , Enterococcaceae/genética , Fermentación , Aromatizantes/metabolismo , Lupinus/metabolismo , Filogenia , Semillas/metabolismo , Semillas/microbiología
19.
Int J Mol Sci ; 22(5)2021 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-33800929

RESUMEN

The main restraint obstructing the wider adoption of lupins as protein crops is the presence of bitter and toxic quinolizidine alkaloids (QAs), whose contents might increase under exposure to stressful environmental conditions. A poor understanding of how QAs accumulate hinders the breeding of sweet varieties. Here, we characterize the expression profiles of QA-related genes, along with the alkaloid content, in various organs of sweet and bitter narrow-leafed lupin (NLL, Lupinus angustifolius L.). Special attention is paid to the RAP2-7 transcription factor, a candidate regulator of the QA pathway. We demonstrate the upregulation of RAP2-7 and other QA-related genes, across the aerial organs of a bitter cultivar and the significant correlations between their expression levels, thus supporting the role of RAP2-7 as an important regulatory gene in NLL. Moreover, we showed that the initial steps of QA synthesis might occur independently in all aerial plant organs sharing common regulatory mechanisms. Nonetheless, other regulatory steps might be involved in RAP2-7-triggered QA accumulation, given its expression pattern in leaves. Finally, the examination of QA-related gene expression in plants infected with Colletotrichum lupini evidenced no connection between QA synthesis and anthracnose resistance, in contrast to the important role of polyamines during plant-pathogen interactions.


Asunto(s)
Colletotrichum/fisiología , Regulación de la Expresión Génica de las Plantas , Lupinus/genética , Enfermedades de las Plantas/genética , Quinolizidinas/metabolismo , Cromatografía de Gases , Lupinus/metabolismo , Lupinus/microbiología , Especificidad de Órganos , Fitomejoramiento , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/biosíntesis , Proteínas de Plantas/genética , Estructuras de las Plantas/metabolismo , Estructuras de las Plantas/microbiología , Poliaminas/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Transcripción/biosíntesis , Factores de Transcripción/genética
20.
Int J Mol Sci ; 22(24)2021 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-34948082

RESUMEN

Matrix metalloproteinases 2 and 9 (MMP-2 and MMP-9) are regarded as important clinical targets due to their nodal-point role in inflammatory and oncological diseases. Here, we aimed at isolating and characterizing am MMP-2 and-9 inhibitor (MMPI) from Lupinus albus and at assessing its efficacy in vitro and in vivo. The protein was isolated using chromatographic and 2-D electrophoretic procedures and sequenced by using MALDI-TOF TOF and MS/MS analysis. In vitro MMP-2 and 9 inhibitions were determined on colon adenocarcinoma (HT29) cells, as well as by measuring the expression levels of genes related to these enzymes. Inhibitory activities were also confirmed in vivo using a model of experimental TNBS-induced colitis in mice, with oral administrations of 15 mg·kg-1. After chromatographic and electrophoretic isolation, the L. albus MMP-9 inhibitor was found to comprise a large fragment from δ-conglutin and, to a lower extent, small fragments of ß-conglutin. In vitro studies showed that the MMPI successfully inhibited MMP-9 activity in a dose-dependent manner in colon cancer cells, with an IC50 of 10 µg·mL-1 without impairing gene expression nor cell growth. In vivo studies showed that the MMPI maintained its bioactivities when administered orally and significantly reduced colitis symptoms, along with a very significant inhibition of MMP-2 and -9 activities. Overall, results reveal a novel type of MMPI in lupine that is edible, proteinaceous in nature and soluble in water, and effective in vivo, suggesting a high potential application as a nutraceutical or a functional food in pathologies related to abnormally high MMP-9 activity in the digestive system.


Asunto(s)
Colitis/dietoterapia , Metaloproteinasa 2 de la Matriz/efectos de los fármacos , Metaloproteinasa 9 de la Matriz/efectos de los fármacos , Proteínas de Plantas/farmacología , Animales , Colitis/tratamiento farmacológico , Colitis/enzimología , Femenino , Células HT29 , Humanos , Lupinus/química , Lupinus/metabolismo , Masculino , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Inhibidores de la Metaloproteinasa de la Matriz/aislamiento & purificación , Inhibidores de la Metaloproteinasa de la Matriz/farmacología , Ratones , Proteínas de Plantas/aislamiento & purificación , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Espectrometría de Masas en Tándem
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA