Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters











Publication year range
1.
Materials (Basel) ; 17(14)2024 Jul 21.
Article in English | MEDLINE | ID: mdl-39063894

ABSTRACT

Bi-doped Sn-Ag-Cu (SAC) microelectronic solder is gaining attention for its utility as a material for solder joints that connect substrates to printed circuit boards (PCB) in future advanced packages, as Bi-doped SAC is reported to have a lower melting temperature, higher strength, higher wettability on conducting pads, and lower intermetallic compound (IMC) formation at the solder-pad interface. As solder joints are subjected to aging during their service life, an investigation of aging-induced changes in the microstructure and mechanical properties of the solder alloy is needed before its wider acceptance in advanced packages. This study focuses on the effects of 1 to 3 wt.% Bi doping in an Sn-3.0Ag-0.5Cu (SAC305) solder alloy on aging-induced changes in hardness and creep resistance for samples prepared by high cooling rates (>5 °C/s). The specimens were aged at ambient and elevated temperatures for up to 90 days and subjected to quasistatic nanoindentation to determine hardness and nanoscale dynamic nanoindentation to determine creep behavior. The microstructural evolution was investigated with a scanning electron microscope in tandem with energy-dispersive spectroscopy to correlate with aging-induced property changes. The hardness and creep strength of the samples were found to increase as the Bi content increased. Moreover, the hardness and creep strength of the 0-1 wt.% Bi-doped SAC305 was significantly reduced with aging, while that of the 2-3 wt.% Bi-doped SAC305 increased with aging. The changes in these properties with aging were correlated to the interplay of multiple hardening and softening mechanisms. In particular, for 2-3 wt.% Bi, the enhanced performance was attributed to the potential formation of additional Ag3Sn IMCs with aging due to non-equilibrium solidification and the more uniform distribution of Bi precipitates. The observations that 2-3 wt.% Bi enhances the hardness and creep strength of the SAC305 alloy with isothermal aging to mitigate reliability risks is relevant for solder samples prepared using high cooling rates.

2.
Materials (Basel) ; 17(11)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38893924

ABSTRACT

This study was conducted on SAC105 (Sn-1wt.%Ag-0.5wt.%Cu) lead-free solder modified with Bi and Sb. The wetting, melting point, and mechanical properties were analysed with the addition of 1~5 wt.%Bi and 1~5 wt.%Sb for SAC105 base alloy. The wetting characteristics were assessed by wetting time (zero cross time, ZCT) obtained from wetting balance tests. The mechanical properties were analysed by tensile tests. Considering two factors (Bi, Sb), a three-level (0, 1, 2 wt.%) design of experiment (DOE) method array was applied for Taguchi optimization. The results indicated that the solder wetting increased as Bi content increased, while it decreased with Sb. The ZCT decreased with increasing Bi content up to 4 wt.%, while it increased proportionally to Sb content. The melting point, measured using a differential scanning calorimeter (DSC), showed that the melting point tended to decrease according to Bi increase, while it increases depending on the Sb content. Increase in Bi and Sb levels resulted in enhanced tensile strength in the mechanical properties tests, with Bi having a more noticeable impact. The Taguchi optimized conditions for the Bi and Sb studies were found to be 2 wt.%Bi and 2 wt.%Sb. This led to an optimal set of 0.9 s of wetting time, a 222.55 °C melting point, a 55 MPa tensile strength, and a 50% elongation.

3.
Heliyon ; 9(2): e12952, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36747560

ABSTRACT

Eutectic Sn-Ag-Cu lead-free solder has limited applications due to cost and reliability issues. Sn-Ag-Zn solder has the advantages of low melting point, good mechanical properties and reliable welding interface. However, the research system of low silver content Sn-Ag-Zn solder is incomplete. In this paper, Sn-2.0Ag-1.5Zn low silver content alloy solder is soldered to different substrates. The interfacial reaction after soldering and the microstructure and reliability under different aging treatment conditions are studied. Sn-2.0Ag-1.5Zn solder is made into solder balls by direct melting method. The solder balls are placed in a solder strength tester to be heated and welded to the substrate, and then the solder joints are placed in a heating furnace for aging treatment. The results show that the solder is soldered to the bare Cu substrate, and a dense double-layer Intermetallic Compound (IMC) structure of Cu5Zn8 and Ag3Sn is formed at the interface after aging treatment. The double-layer structure blocks each other, limiting the development of copper-tin IMCs. The solder is soldered with the Cu substrate electroplated with Ni barrier layer, and the soldering interface forms a thin layer of Ni3Sn4 metal compound. After aging for 1000 h, the thickness of Ni3Sn4 is about 1 µm, the thickness of Ni barrier layer is kept at 2-3 µm, and the barrier effect of Ni barrier layer is stable. Sn-2.0Ag-1.5Zn solder has excellent loss performance in long aging treatment. It has good heat-resistance aging treatment, good quality of solder connection, high interface reliability and less environmental pollution. The low silver content in Sn-2.0Ag-1.5Zn solder results in a significant cost reduction. Coarse IMC Ag3Sn is not easily formed. The optimized ratio of Ag and Zn in Sn-2.0Ag-1.5Zn solder improves the strength and toughness of the solder joint. The performance has been improved, and it is a very promising alloy solder.

4.
Materials (Basel) ; 15(23)2022 Nov 23.
Article in English | MEDLINE | ID: mdl-36499814

ABSTRACT

This research evaluates the mechanical properties of a variety of binary In-Sn alloys as potential candidates for low temperature electronic joints. The tensile and hardness tests of as-cast In-5Sn, In-12.5Sn, In-25Sn, In-30Sn, In-35Sn, In-40Sn, In-50Sn, In-60Sn, In-80Sn (wt.%) were assessed at room temperature and compared to those of pure In and Sn. The ultimate tensile strength (UTS) increased from 4.2 MPa to 37.8 MPa with increasing tin content in the alloys under the testing condition of 18 mm/min and the results showed little difference under a lower strain rate (1.8 mm/min). Most compositions showed good ductility in tensile testing with an average of 40% elongation. A melting point range of 119.3 °C to 194.9 °C for tested alloys was measured using differential scanning calorimetry (DSC). The microstructure investigated by scanning electron microscopy (SEM) was discussed with respect to the mechanical properties and it has been found that the presence of the Sn-rich γ-InSn4 phase in the microstructure has a significant impact on mechanical properties. The fundamental data from this study can be used for the development of new low temperature In-Sn alloys.

5.
Materials (Basel) ; 15(14)2022 Jul 21.
Article in English | MEDLINE | ID: mdl-35888552

ABSTRACT

Sn-rich solder joints in three-dimensional integrated circuits and their reliability issues, such as the electromigration (EM), thermomigration (TM), and thermomechanical fatigue (TMF), have drawn attention related to their use in electronic packaging. The Sn grain orientation is recognized as playing an important role in reliability issues due to its anisotropic diffusivity, mechanical properties, and coefficient of thermal expansion. This study reviews the effects of the Sn grain orientation on the EM, TM, and TMF in Sn-rich solder joints. The findings indicate that in spite of the failure modes dominated by the Sn grain orientation, the size and shape of the solder joint, as well as the Sn microstructures, such as the cycling twining boundary (CTB), single crystals, and misorientations of the Sn grain boundary, should be considered in more detail. In addition, we show that two methods, involving a strong magnetic field and seed crystal layers, can control the Sn grain orientations during the solidification of Sn-rich solder joints.

6.
Materials (Basel) ; 16(1)2022 Dec 22.
Article in English | MEDLINE | ID: mdl-36614433

ABSTRACT

This paper elucidates the influence of dimple-microtextured copper substrate on the performance of Sn-0.7Cu solder alloy. A dimple with a diameter of 50 µm was produced by varying the dimple depth using different laser scanning repetitions, while the dimple spacing was fixed for each sample at 100 µm. The dimple-microtextured copper substrate was joined with Sn-0.7Cu solder alloy using the reflow soldering process. The solder joints' wettability, microstructure, and growth of its intermetallic compound (IMC) layer were analysed to determine the influence of the dimple-microtextured copper substrate on the performance of the Sn-0.7Cu solder alloy. It was observed that increasing laser scan repetitions increased the dimples' depth, resulting in higher surface roughness. In terms of soldering performance, it was seen that the solder joints' average contact angle decreased with increasing dimple depth, while the average IMC thickness increased as the dimple depth increased. The copper element was more evenly distributed for the dimple-micro-textured copper substrate than its non-textured counterpart.

7.
Materials (Basel) ; 14(20)2021 Oct 11.
Article in English | MEDLINE | ID: mdl-34683563

ABSTRACT

Heterogeneous integration is leading to unprecedented miniaturization of solder joints, often with thousands of joints within a single package. The thermomechanical behavior of such SAC solder joints is critically important to assembly performance and reliability, but can be difficult to predict due to the significant joint-to-joint variability caused by the stochastic variability of the arrangement of a few highly-anisotropic grains in each joint. This study relies on grain-scale testing to characterize the mechanical behavior of such oligocrystalline solder joints, while a grain-scale modeling approach has been developed to assess the effect of microstructure that lacks statistical homogeneity. The contribution of the grain boundaries is modeled with isotropic cohesive elements and identified by an inverse iterative method that extracts material properties by comparing simulation with experimental measurements. The properties are extracted from the results of one test and validated by verifying reasonable agreement with test results from a different specimen. Equivalent creep strain heterogeneity within the same specimen and between different specimens are compared to assess typical variability due to the variability of microstructure.

8.
Materials (Basel) ; 14(12)2021 Jun 17.
Article in English | MEDLINE | ID: mdl-34204373

ABSTRACT

Current challenges in printed circuit board (PCB) assembly require high-resolution deposition of ultra-fine pitch components (<0.3 mm and <60 µm respectively), high throughput and compatibility with flexible substrates, which are poorly met by the conventional deposition techniques (e.g., stencil printing). Laser-Induced Forward Transfer (LIFT) constitutes an excellent alternative for assembly of electronic components: it is fully compatible with lead-free soldering materials and offers high-resolution printing of solder paste bumps (<60 µm) and throughput (up to 10,000 pads/s). In this work, the laser-process conditions which allow control over the transfer of solder paste bumps and arrays, with form factors in line with the features of fine pitch PCBs, are investigated. The study of solder paste as a function of donor/receiver gap confirmed that controllable printing of bumps containing many microparticles is feasible for a gap < 100 µm from a donor layer thickness set at 100 and 150 µm. The transfer of solder bumps with resolution < 100 µm and solder micropatterns on different substrates, including PCB and silver pads, have been achieved. Finally, the successful operation of a LED interconnected to a pin connector bonded to a laser-printed solder micro-pattern was demonstrated.

9.
Materials (Basel) ; 14(14)2021 Jul 07.
Article in English | MEDLINE | ID: mdl-34300718

ABSTRACT

The effect of the addition volume of Ni on the microstructures and tensile and fatigue properties of Sn-6.4Sb-3.9Ag (mass%) was investigated using micro-size specimens. The addition of Ni into Sn-6.4Sb-3.9Ag tends to increase the number of grains formed in the solidification process and produce a high-angle grain boundary. An amount of 0.1% proof stress of Sn-6.4Sb-3.9Ag decreases with an increase in the Ni addition volume at a strain rate of 2.0 × 10-1 s-1. The effect of the addition of Ni into Sn-6.4Sb-3.9Ag on tensile strength is negligible at both 25 °C and 175 °C. The elongation of Sn-6.4Sb-3.9Ag decreases with an increase in the Ni addition volume at 25 °C according to the fracture mode change from ductile chisel point fracture to shear fracture. The effect of the addition of Ni into Sn-6.4Sb-3.9Ag on the elongation is negligible at 175 °C. The low cycle fatigue test result shows that the fatigue life does not degrade even at 175 °C in all alloys investigated. The fatigue life of Sn-6.4Sb-3.9Ag-0.4Ni (mass%) is superior to those of Sn-6.4Sb-3.9Ag and Sn-6.4Sb-3.9Ag-0.03Ni (mass%) in the high cycle fatigue area. The electron back scattering diffraction (EBSD) analysis result shows that fine recrystallized grains are generated at the cracked area in Sn-6.4Sb-3.9Ag-0.4Ni in the fatigue test at 175 °C, and the crack progresses in a complex manner at the grain boundaries.

10.
Materials (Basel) ; 14(10)2021 May 14.
Article in English | MEDLINE | ID: mdl-34068956

ABSTRACT

Electrochemical corrosion behavior of ternary tin-zinc-yttrium (Sn-9Zn-xY) solder alloys were investigated in aerated 3.5 wt.% NaCl solution using potentiodynamic polarization techniques, and the microstructure evolution was obtained by scanning electron microscope (SEM). Eight different compositions of Sn-9Zn-xY (x = 0, 0.02, 0.04, 0.06, 0.08, 0.10, 0.20, and 0.30 wt.%) were compared by melting. The experimental results show that when the content of Y reached 0.06 wt.%, the grain size of Zn-rich phase became the smallest and the effect of grain refinement was the best, but there was no significant effect on the melting point. With the increases of Y content, the spreading ratio first increased and then decreased. When the content of Y was 0.06 wt.%, the Sn-9Zn-0.06Y solder alloy had the best wettability on the Cu substrate, which was increased by approximately 20% compared with Sn-9Zn. Besides, the electrochemical corrosion experimental shows that the Y can improve the corrosion resistance of Sn-9Zn system in 3.5 wt.% NaCl solution, and the corrosion resistance of the alloy is better when the amount of Y added is larger within 0.02-0.30 wt.%. Overall considering all performances, the optimal performance can be obtained when the addition amount of Y is 0.06.

11.
Materials (Basel) ; 14(9)2021 May 02.
Article in English | MEDLINE | ID: mdl-34063188

ABSTRACT

In this study, the interfacial reactions and mechanical properties of solder joints after multiple reflows were observed to evaluate the applicability of the developed materials for high-temperature soldering for automotive electronic components. The microstructural changes and mechanical properties of Sn-Cu solders regarding Al(Si) addition and the number of reflows were investigated to determine their reliability under high heat and strong vibrations. Using differential scanning calorimetry, the melting points were measured to be approximately 227, 230, and 231 °C for the SC07 solder, SC-0.01Al(Si), and SC-0.03Al(Si), respectively. The cross-sectional analysis results showed that the total intermetallic compounds (IMCs) of the SC-0.03Al(Si) solder grew the least after the as-reflow, as well as after 10 reflows. Electron probe microanalysis and transmission electron microscopy revealed that the Al-Cu and Cu-Al-Sn IMCs were present inside the solders, and their amounts increased with increasing Al(Si) content. In addition, the Cu6Sn5 IMCs inside the solder became more finely distributed with increasing Al(Si) content. The Sn-0.5Cu-0.03Al(Si) solder exhibited the highest shear strength at the beginning and after 10 reflows, and ductile fracturing was observed in all three solders. This study will facilitate the future application of lead-free solders, such as an Sn-Cu-Al(Si) solder, in automotive electrical components.

12.
Materials (Basel) ; 14(4)2021 Feb 23.
Article in English | MEDLINE | ID: mdl-33672390

ABSTRACT

We prepared overlap soldered joints of high-temperature superconducting tapes, using various materials and preparation conditions. In order to select the joints with optimal performance, we correlated their electrical properties (derived from current-voltage curves) with the microstructure of the respective joint cross-section by scanning electron microscopy. With the first group of joints, we focused on the effect of used materials on joint resistivity and critical current, and we found that the dominant role was played by the quality of the internal interfaces of the superconducting tape. Initial joint resistivities ranged in the first group from 41 to 341 nΩ·cm2. The second group of joints underwent a series of thermal cyclings, upon which the initial resistivity range of 35-49 nΩ·cm2 broadened to 25-128 nΩ·cm2. After the total of 135 thermal cycles, three out of four joints showed no signs of significant degradation. Within the limit of 100 thermal cycles, reliable soldered joints can be thus prepared, with normalized resistivity not exceeding 1.4 and with normalized critical current above the value of 0.85.

13.
Materials (Basel) ; 14(4)2021 Feb 07.
Article in English | MEDLINE | ID: mdl-33562200

ABSTRACT

This paper elucidates the effect of isothermal ageing at temperature of 85 °C, 125 °C and 150 °C for 100, 500 and 1000 h on Sn-3.0Ag-0.5Cu (SAC305) lead-free solder with the addition of 1 wt% kaolin geopolymer ceramic (KGC) reinforcement particles. SAC305-KGC composite solders were fabricated through powder metallurgy using a hybrid microwave sintering method and reflowed on copper substrate printed circuit board with an organic solderability preservative surface finish. The results revealed that, the addition of KGC was beneficial in improving the total thickness of interfacial intermetallic compound (IMC) layer. At higher isothermal ageing of 150 °C and 1000 h, the IMC layer in SAC305-KGC composite solder was towards a planar-type morphology. Moreover, the growth of total interfacial IMC layer and Cu3Sn layer during isothermal ageing was found to be controlled by bulk diffusion and grain-boundary process, respectively. The activation energy possessed by SAC305-KGC composite solder for total interfacial IMC layer and Cu3Sn IMC was 74 kJ/mol and 104 kJ/mol, respectively. Based on a lap shear test, the shear strength of SAC305-KGC composite solder exhibited higher shear strength than non-reinforced SAC305 solder. Meanwhile, the solder joints failure mode after shear testing was a combination of brittle and ductile modes at higher ageing temperature and time for SAC305-KGC composite solder.

14.
Materials (Basel) ; 14(4)2021 Feb 05.
Article in English | MEDLINE | ID: mdl-33562471

ABSTRACT

The evolution of internal compressive stress from the intermetallic compound (IMC) Cu6Sn5 growth is commonly acknowledged as the key inducement initiating the nucleation and growth of tin (Sn) whisker. This study investigates the effect of Sn-0.7Cu-0.05Ni on the nucleation and growth of Sn whisker under continuous mechanical stress induced. The Sn-0.7Cu-0.05Ni solder joint has a noticeable effect of suppression by diminishing the susceptibility of nucleation and growth of Sn whisker. By using a synchrotron micro X-ray fluorescence (µ-XRF) spectroscopy, it was found that a small amount of Ni alters the microstructure of Cu6Sn5 to form a (Cu,Ni)6Sn5 intermetallic layer. The morphology structure of the (Cu,Ni)6Sn5 interfacial intermetallic layer and Sn whisker growth were investigated by scanning electron microscope (SEM) in secondary and backscattered electron imaging mode, which showed that there is a strong correlation between the formation of Sn whisker and the composition of solder alloy. The thickness of the (Cu,Ni)6Sn5 IMC interfacial layer was relatively thinner and more refined, with a continuous fine scallop-shaped IMC interfacial layer, and consequently enhanced a greater incubation period for the nucleation and growth of the Sn whisker. These verification outcomes proposes a scientifically foundation to mitigate Sn whisker growth in lead-free solder joint.

15.
Materials (Basel) ; 13(19)2020 Oct 07.
Article in English | MEDLINE | ID: mdl-33036405

ABSTRACT

To obtain Sn-3.0Ag-0.5Cu-xSb (x = 0, 25, 28, and 31) high-temperature lead-free solder antimony was added to Sn-3.0Ag-0.5Cu solder. The microstructure, thermal properties, and mechanical behavior of the solder alloy prepared were studied by using JSM-5610LV scanning electron microscope, Germany STA409PC differential scanning calorimeter, AG-I250KN universal tensile testing machine, and other methods. The SEM-EDS results showed that after adding Sb, SnSb phase was formed in the ß-Sn matrix phase. The newly formed SnSb phase and the existing Sb in the solder alloy can inhibit the generation of IMC and refine the IMC layer. The addition of Sb significantly increased the melting temperature of the solder alloy. Among them, the thermal performance of Sn-3.0Ag-0.5Cu-25Sb is the best. The melting temperature of Sn-3.0Ag-0.5Cu-25Sb is 332.91 °C and the solid-liquid line range of Sn-3.0Ag-0.5Cu-25Sb solder alloy is 313.28-342.02 °C. Its pasty range is 28.74 °C, lower than 30 °C, which is beneficial for soldering. The test results of the mechanical behavior of Sn-3.0Ag-0.5Cu-xSb solder alloy show that with the increase of Sb addition, the ultimate tensile strength of the solder alloy also increases. However, the change of the elongation of the solder alloy is the opposite. The ultimate tensile strength of the solder alloy increased from 29.45 MPa of Sn-3.0Ag-0.5Cu solder to 70.81 MPa of Sn-3.0Ag-0.5Cu-31Sb solder. The reason for the increase in the strength of the solder alloy is the reduction of the thickness of IMC and the solid solution hardening effect of Sb.

16.
Materials (Basel) ; 13(18)2020 Sep 08.
Article in English | MEDLINE | ID: mdl-32911653

ABSTRACT

Graphene nanosheets (GNSs) have an extensive application in materials modification. In this study, the effects of graphene nanosheets on the wettability of Sn-20Bi lead-free solder on copper (Cu) substrate and the growth behavior of intermetallic compound (IMC) layers at Sn-20Bi-xGNS/Cu solder joints were investigated. The experimental results indicate that the wettability of Sn-20Bi solder firstly diminished and then increased by the addition of GNSs. Meanwhile, a prism-shaped and scallop-shaped Cu6Sn5 IMC layer was clearly observed at the interface of the solder/substrate system. Moreover, it was found that a small amount of GNS addition can significantly inhibit the growth of the IMC layer at the interface as well as refine the microstructure. Additionally, by nano-indentation apparatus, it can be concluded that the hardness and elastic module of IMCs show the same variation trend, which firstly decreased and then increased. Besides, to intuitively demonstrate the reliability of IMCs, the relationship between the hardness and elastic module was established, and the ratio of hardness/elastic module (H/E) was adopted to characterize the reliability of IMCs. The results show that when the addition of GNSs was 0.02 wt%, the value of H/E is the minimum and the solder joint has the highest reliability.

17.
Sci Technol Adv Mater ; 20(1): 876-901, 2019.
Article in English | MEDLINE | ID: mdl-31528239

ABSTRACT

Electronic products are evolving towards miniaturization, high integration, and multi-function, which undoubtedly puts forward higher requirements for the reliability of solder joints in electronic packaging. Approximately 70% of failure in electronic devices originates during the packaging process, mostly due to the failure of solder joints. With the improvement of environmental protection awareness, lead-free solder joints have become a hot issue in recent years. This paper reviews the research progress on the reliability of lead-free solder joints and discusses the influence of temperature, vibration, tin whisker and electromigration on the reliability of solder joints. In addition, the measures to improve the reliability of solder joints are analyzed according to the problems of solder joints themselves, which provides a further theoretical basis for the study of the reliability of solder joints of electronic products in service.

18.
Materials (Basel) ; 10(5)2017 May 19.
Article in English | MEDLINE | ID: mdl-28772917

ABSTRACT

With the purpose of improving the properties of the Sn-58Bi lead-free solder, micro-CuZnAl particles ranging from 0 to 0.4 wt % were added into the low temperature eutectic Sn-58Bi lead-free solder. After the experimental testing of micro-CuZnAl particles on the properties and microstructure of the Sn-58Bi solders, it was found that the wettability of the Sn-58Bi solders was obviously improved with addition of CuZnAl particles. When the addition of CuZnAl particles was 0.2 wt %, the wettability of the Sn-58Bi solder performed best. At the same time, excessive addition of CuZnAl particles led to poor wettability. However, the results showed that CuZnAl particles changed the melting point of the Sn-58Bi solder slightly. The microstructure of the Sn-58Bi solder was refined by adding CuZnAl particles. When the content of CuZnAl addition was between 0.1 and 0.2 wt %, the refinement was great. In addition, the interfacial IMC layer between new composite solder and Cu substrate was thinner than that between the Sn-58Bi solder and Cu substrate.

19.
Microsc Microanal ; 22(4): 808-13, 2016 08.
Article in English | MEDLINE | ID: mdl-27426439

ABSTRACT

Three-dimensional (3D) nondestructive microstructural characterization was performed using full-field transmission X-ray microscopy on an Sn-rich alloy, at a spatial resolution of 60 nm. This study highlights the use of synchrotron radiation along with Fresnel zone plate optics to perform absorption contrast tomography for analyzing nanoscale features of fine second phase particles distributed in the tin matrix, which are representative of the bulk microstructure. The 3D reconstruction was also used to quantify microstructural details of the analyzed volume.

20.
ACS Appl Mater Interfaces ; 8(8): 5679-86, 2016 Mar 02.
Article in English | MEDLINE | ID: mdl-26856638

ABSTRACT

The immoderate growth of intermetallic compounds (IMCs) formed at the interface of a solder metal and the substrate during soldering can degrade the mechanical properties and reliability of a solder joint in electronic packaging. Therefore, it is critical to control IMC growth at the solder joints between the solder and the substrate. In this study, we investigated the control of interfacial reactions and IMC growth by the layer-by-layer transfer of graphene during the reflow process at the interface between Sn-3.0Ag-0.5Cu (in wt %) lead-free solder and Cu. As the number of graphene layers transferred onto the surface of the Cu substrate increased, the thickness of the total IMC (Cu6Sn5 and Cu3Sn) layer decreased. After 10 repetitions of the reflow process for 50 s above 217 °C, the melting temperature of Sn-3.0Ag-0.5Cu, with a peak temperature of 250 °C, the increase in thickness of the total IMC layer at the interface with multiple layers of graphene was decreased by more than 20% compared to that at the interface of bare Cu without graphene. Furthermore, the average diameter of the Cu6Sn5 scallops at the interface with multiple layers of graphene was smaller than that at the interface without graphene. Despite 10 repetitions of the reflow process, the growth of Cu3Sn at the interface with multiple layers of graphene was suppressed by more than 20% compared with that at the interface without graphene. The multiple layers of graphene at the interface between the solder metal and the Cu substrate hindered the diffusion of Cu atoms from the Cu substrate and suppressed the reactions between Cu and Sn in the solder. Thus, the multiple layers of graphene transferred at the interface between dissimilar metals can control the interfacial reaction and IMC growth occurring at the joining interface.

SELECTION OF CITATIONS
SEARCH DETAIL