Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 199
Filter
1.
Eur J Med Chem ; 261: 115779, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-37776574

ABSTRACT

A series of 36 pyrazol-4-yl pyridine derivatives (8a-i, 9a-i, 10a-i, and 11a-i) was designed, synthesized, and evaluated for its antiproliferative activity over NCI-60 cancer cell line panel and inhibitory effect against JNK isoforms (JNK1, JNK2, and JNK3). All the synthesized compounds were tested against the NCI-60 cancer cell line panel. Compounds 11b, 11c, 11g, and 11i were selected to determine their GI50s and exerted a superior potency over the reference standard SP600125 against the tested cell lines. 11c showed a GI50 of 1.28 µM against K562 leukemic cells. Vero cells were used to assess 11c cytotoxicity compared to the tested cancer cells. The target compounds were tested against hJNK isoforms in which compound 11e exhibited the highest potency against JNK isoforms with IC50 values of 1.81, 12.7, and 10.5 nM against JNK1, JNK2, and JNK3, respectively. Kinase profiling of 11e showed higher JNK selectivity in 50 kinase panels. Compounds 11c and 11e showed cell population arrest at the G2/M phase, induced early apoptosis, and slightly inhibited beclin-1 production at higher concentrations in K562 leukemia cells relative to SP600125. NanoBRET assay of 11e showed intracellular JNK1 inhibition with an IC50 of 2.81 µM. Also, it inhibited CYP2D6 and 3A4 with different extent and its hERG activity showed little cardiac toxicity with an IC50 of 4.82 µM. hJNK3 was used as a template to generate the hJNK1 crystal structure to explore the binding mode of 11e (PDB ID: 8ENJ) with a resolution of 2.8 °A and showed a typical type I kinase inhibition against hJNK1. Binding energy scores showed that selectivity of 11e towards JNK1 could be attributed to additional hydrophobic interactions relative to JNK3.


Subject(s)
Azoles , JNK Mitogen-Activated Protein Kinases , Animals , Chlorocebus aethiops , Vero Cells , Azoles/pharmacology , Protein Isoforms , Pyridines/pharmacology , Cell Proliferation
2.
Eur J Med Chem ; 246: 114958, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36470105

ABSTRACT

A series of adamantyl carboxamide derivatives containing sulfonate or sulfonamide moiety were designed as multitargeted inhibitors of ectonucleotide pyrophosphatases/phosphodiesterases (NPPs) and carbonic anhydrases (CAs). The target compounds were investigated for their antiproliferative activity against NCI-60 cancer cell lines panel. Three main series composed of 3- and 4-aminophenol, 4-aminoaniline, and 5-hydroxyindole scaffolds were designed based on a lead compound (A). Compounds 1e (benzenesulfonyl) and 1i (4-fluorobenzenesulfonyl) of 4-aminophenol backbone exhibited the most promising antiproliferative activity. Both compounds exhibited a broad-spectrum and potent inhibition against all the nine tested cancer subtypes. Both compounds showed nanomolar IC50 values over several cancer cell lines that belong to leukemia and colon cancer such as K-562, RPMI-8226, SR, COLO 205, HCT-116, HCT-15, HT29, KM12, and SW-620 cell lines. Compounds 1e and 1i induced apoptosis in K-562 leukemia cells in a dose-dependent manner. Compound 1i showed the highest cytotoxic activity with IC50 value of 200 nM against HT29 cell line. In addition, compounds 1e and 1i were tested against normal breast cells (HME1) and normal skin fibroblast cells (F180) and the results revealed that the compounds are safe toward normal cells compared to cancers cells. Enzymatic assays against NPP1-3 and carbonic anhydrases II, IX, and XII were performed to investigate the possible molecular target(s) of compounds 1e and 1i. Furthermore, a molecular docking study was performed to predict the binding modes of compounds 1e and 1i in the active site of the most sensitive enzymes subtypes.


Subject(s)
Antineoplastic Agents , Carbonic Anhydrases , Leukemia , Humans , Antineoplastic Agents/chemistry , Carbonic Anhydrase Inhibitors/chemistry , Carbonic Anhydrases/metabolism , Cell Proliferation , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Molecular Docking Simulation , Molecular Structure , Structure-Activity Relationship
3.
Sensors (Basel) ; 22(22)2022 Nov 19.
Article in English | MEDLINE | ID: mdl-36433565

ABSTRACT

In ultrahigh-field (UHF) magnetic resonance imaging (MRI) system, the RF power required to excite the nuclei of the target object increases. As the strength of the main magnetic field (B0 field) increases, the improvement of the RF transmit field (B1+ field) efficiency and receive field (B1- field) sensitivity of radio-frequency (RF) coils is essential to reduce their specific absorption rate and power deposition in UHF MRI. To address these problems, we previously proposed a method to simultaneously improve the B1+ field efficiency and B1- field sensitivity of 16-leg bandpass birdcage RF coils (BP-BC RF coils) by combining a multichannel wireless RF element (MCWE) and segmented cylindrical high-permittivity material (scHPM) comprising 16 elements in 7.0 T MRI. In this work, we further improved the performance of transmit/receive RF coils. A new combination of RF coil with wireless element and HPM was proposed by comparing the BP-BC RF coil with the MCWE and the scHPM proposed in the previous study and the multichannel RF coils with a birdcage RF coil-type wireless element (BCWE) and the scHPM proposed in this study. The proposed 16-ch RF coils with the BCWE and scHPM provided excellent B1+ field efficiency and B1- field sensitivity improvement.


Subject(s)
Magnetic Resonance Imaging , Radio Waves , Magnetic Fields , Cell Nucleus
4.
Antibiotics (Basel) ; 11(11)2022 Oct 30.
Article in English | MEDLINE | ID: mdl-36358170

ABSTRACT

Naegleria fowleri (N. fowleri) is a free-living, unicellular, opportunistic protist responsible for the fatal central nervous system infection, primary amoebic meningoencephalitis (PAM). Given the increase in temperatures due to global warming and climate change, it is estimated that the cases of PAM are on the rise. However, there is a current lack of awareness and effective drugs, meaning there is an urgent need to develop new therapeutic drugs. In this study, the target compounds were synthesized and tested for their anti-amoebic properties against N. fowleri. Most compounds exhibited significant amoebicidal effects against N. fowleri; for example, 1h, 1j, and 1q reduced N. fowleri's viability to 15.14%, 17.45% and 28.78%, respectively. Furthermore, the majority of the compounds showed reductions in amoeba-mediated host death. Of interest are the compounds 1f, 1k, and 1v, as they were capable of reducing the amoeba-mediated host cell death to 52.3%, 51%, and 56.9% from 100%, respectively. Additionally, these compounds exhibit amoebicidal properties as well; they were found to decrease N. fowleri's viability to 26.41%, 27.39%, and 24.13% from 100%, respectively. Moreover, the MIC50 values for 1e, 1f, and 1h were determined to be 48.45 µM, 60.87 µM, and 50.96 µM, respectively. Additionally, the majority of compounds were found to exhibit limited cytotoxicity, except for 1l, 1o, 1p, 1m, 1c, 1b, 1zb, 1z, 1y, and 1x, which exhibited negligible toxicity. It is anticipated that these compounds may be developed further as effective treatments against these devastating infections due to brain-eating amoebae.

5.
Antibiotics (Basel) ; 11(9)2022 Aug 31.
Article in English | MEDLINE | ID: mdl-36139962

ABSTRACT

We examined the antiamoebic effect of several imidazothiazole derivatives on Acanthamoeba castellanii of the T4 genotype. Trypan blue exclusion assays and haemocytometer counting were used to determine the reduction in A. castellanii trophozoite proliferation, in response to treatment with these compounds. To determine the effects of these compounds on host cells, lactate dehydrogenase assay was performed using HeLa cell lines. Amoebicidal assays revealed that the tested compounds at concentrations of 50 µM significantly inhibited amoebae trophozoites compared to controls. Compounds 1m and 1zb showed the highest amoebicidal effects eradicating 70% and 67% of A. castellanii, respectively. The compounds blocked both the encystation and excystation process in A. castellanii. Compounds 1m and 1zb blocked 61% and 55%, respectively, of amoeba binding to human cells. Moreover, the compounds showed minimal cytotoxic effects against host cells and considerably reduced amoeba-mediated host cell death. Overall, our study revealed that compounds 1m and 1zb have excellent antiamoebic potential, and should be considered in the development of curative antiamoebic medications in future studies. Further work is critical to determine the translational value of these findings.

6.
Anticancer Res ; 42(6): 2911-2921, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35641256

ABSTRACT

BACKGROUND/AIM: The B-raf proto-oncogene, serine/threonine kinase (BRAF) V600E mutation is frequent in patients with advanced melanoma. PLX4032, an inhibitor of BRAFV600E kinase, is effective for the treatment of melanoma in BRAF V600E-positive patients; however, resistance eventually develops due to paradoxical activation of the mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinases (ERK) pathway resulting from RAF dimerization. In this study, we investigated the inhibitory effects of a novel imidazothiazole-based compound, KS28, on RAF dimerization and resistance to PLX4032 in melanoma. MATERIALS AND METHODS: The effects of KS28 were examined by immunoblotting, cell viability, terminal deoxynucleotidyl transferase dUTP nick-end labeling, reporter-gene, and soft-agar assays. RESULTS: KS28 treatment inhibited RAF dimerization in PLX4032-resistant A375 (A375R) cells, leading to suppression of the MEK/ERK pathway. In addition, KS28 reduced activator protein 1 transactivation in A375R cells, reduced cell viability, and increased DNA fragmentation. Moreover, treatment with KS28 suppressed anchorage-independent growth of A375R cells. Similarly, in an orthotopic tumor xenograft model, KS28 treatment suppressed the growth of tumors formed by A375R cells in BALB/c mice. CONCLUSION: KS28 plays a vital role in overcoming PLX4032 resistance in melanoma by down-regulating the MEK/ERK pathway.


Subject(s)
Drug Resistance, Neoplasm , Melanoma , Proto-Oncogene Proteins B-raf , Vemurafenib , Animals , Cell Line, Tumor , Extracellular Signal-Regulated MAP Kinases/metabolism , Humans , Melanoma/drug therapy , Melanoma/genetics , Melanoma/metabolism , Mice , Mice, Inbred BALB C , Mitogen-Activated Protein Kinase Kinases/metabolism , Protein Multimerization , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Proto-Oncogene Proteins B-raf/genetics , Vemurafenib/pharmacology , Xenograft Model Antitumor Assays
7.
Eur J Pharm Sci ; 171: 106115, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-34995782

ABSTRACT

In the current article, we introduce design of a new series of 4-(imidazol-5-yl)pyridines with improved anticancer activity and selective B-RAFV600E/p38α kinase inhibitory activity. Based on a previous work, a group of structural modifications were applied affording the new potential antiproliferative agents. Towards extensive biological assessment of the target compounds, an in vitro anticancer assay was conducted over NCI 60-cancer cell lines panel representing blood, lung, colon, CNS, skin, ovary, renal, prostate, and breast cancers. Compounds 7c, 7d, 8b, 9b, 9c, 10c, 10d, and 11b exhibited the highest potency among the tested compounds and demonstrated sub-micromolar or one-digit micromolar GI50 values against the majority of the employed cell lines. Compound 10c emerged as the most potent agent with nano-molar activity over most of the cells and incredible activity against melanoma (MDA-MB-435) cell line (GI50 70 nM). It is much more potent than sorafenib, the clinically used anticancer drug, against almost all the NCI-60 cell lines. Further cell-based mechanistic assays showed that compound 10c induced cell cycle arrest and promoted apoptosis in K562, MCF-7 and HT29 cancer cell lines. In addition, compound 10c induced autophagy in the three cancer cell lines. Kinase profiling of 10c showed its inhibitory effects and selectivity towards B-RAFV600E and p38α kinases with IC50 values of 1.84 and 0.726 µM, respectively. Docking of compound 10c disclosed its high affinity in the kinases pockets. Compound 10c represent a promising anticancer agent, that could be optimized in order to improve its kinase activity aiming at developing potential anticancer agents. The conformational stability of compound 10c in the active site of B-RAFV600E and p38α kinases was studied by applying molecular dynamic simulation of the compound in the two kinases for 600 ns in comparison to the native ligands.


Subject(s)
Antineoplastic Agents , Protein Kinase Inhibitors , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Proliferation , Dose-Response Relationship, Drug , Drug Design , Drug Screening Assays, Antitumor , Female , Molecular Structure , Protein Kinase Inhibitors/chemistry , Pyridines/pharmacology , Structure-Activity Relationship
8.
Molecules ; 26(21)2021 Oct 27.
Article in English | MEDLINE | ID: mdl-34770896

ABSTRACT

A series of thirteen triarylpyrazole analogs were investigated as inhibitors of lipopolysaccharide (LPS)-induced prostaglandin E2 (PGE2) and nitric oxide (NO) production in RAW 264.7 macrophages. The target compounds 1a-m have first been assessed for cytotoxicity against RAW 264.7 macrophages to determine their non-cytotoxic concentration(s) for anti-inflammatory testing to make sure that the inhibition of PGE2 and NO production would not be caused by cytotoxicity. It was found that compounds 1f and 1m were the most potent PGE2 inhibitors with IC50 values of 7.1 and 1.1 µM, respectively. In addition, these compounds also showed inhibitory effects of 11.6% and 37.19% on LPS-induced NO production, respectively. The western blots analysis of COX-2 and iNOS showed that the PGE2 and NO inhibitory effect of compound 1m are attributed to inhibition of COX-2 and iNOS protein expression through inactivation of p38.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Dinoprostone/biosynthesis , Macrophages/drug effects , Macrophages/metabolism , Nitric Oxide/biosynthesis , Pyrazoles/pharmacology , Animals , Anti-Inflammatory Agents/chemistry , Dose-Response Relationship, Drug , Lipopolysaccharides/immunology , Macrophages/immunology , Mice , Molecular Structure , Pyrazoles/chemistry , RAW 264.7 Cells , Structure-Activity Relationship
9.
Bioorg Chem ; 117: 105424, 2021 12.
Article in English | MEDLINE | ID: mdl-34678604

ABSTRACT

A new series of N-(2-((4-(1,3-diphenyl-1H-pyrazol-4-yl)pyridine sulfonamide derivatives 11a-o were designed and synthesized based on our previous works. The new series was tested for its anticancer and anti-inflammatory effects. The anticancer profile of final target compounds was obtained by testing them over 60 cell lines belong to nine types of cancers. Compound 11c showed the highest percent inhibition, so its potency was measured over the most sensitive cell line to determine its IC50 over each cell. In addition, compound 11c was tested over kinase panel to get its biological target(s). Compound 11c had strong activity over JNK1, JNK2, p38a and V600EBRAF. All final target compounds were tested against the four kinases to build a structure activity relationship. Compound 11c was subjected to cell cycle analysis to check at which phase is affected by 11c. The anti-inflammatory effect of final target compounds was screened by testing their ability to inhibit both nitric oxide release and prostaglandin E2 production on raw 264.7 macrophages in addition to test their cytotoxic effect on the same cells. Compound 11n showed the highest ability to inhibit prostaglandin E2 and all compound showed moderate to low activity regarding inhibition of nitric oxide release. Compound 11n was investigated for its ability to reduce Interleukin 6 and TNF-alpha. In addition, compound 11n was tested for its effect on induced Nitric oxide synthase (iNOS), and COX-2 mRNA expression level and its effect on nitric oxide synthase (iNOS), COX-1 and COX-2 protein levels where it showed selectivity for COX-2 compared to COX-1 and iNOS.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Antineoplastic Agents/pharmacology , Pyrazoles/pharmacology , Pyridines/pharmacology , Sulfonamides/pharmacology , Animals , Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Cytokines/antagonists & inhibitors , Cytokines/biosynthesis , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Mice , Molecular Structure , Pyrazoles/chemical synthesis , Pyrazoles/chemistry , Pyridines/chemical synthesis , Pyridines/chemistry , RAW 264.7 Cells , Structure-Activity Relationship , Sulfonamides/chemical synthesis , Sulfonamides/chemistry
10.
Eur J Med Chem ; 224: 113674, 2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34237622

ABSTRACT

This article reports on novel imidazothiazole derivatives as first-in-class potent and selective ErbB4 (HER4) inhibitors. There are no other reported selective inhibitors of this kinase in the literature, that's why they are considered as first-in-class. In addition, none of the reported non-selective ErbB4 inhibitors possesses imidazothiazole nucleus in its structure. Therefore, there is novelty in this work in both kinase selectivity and chemical structure. Compounds Ik and IIa are the most potent ErbB4 kinase inhibitor (IC50 = 15.24 and 17.70 nM, respectively). Compound Ik showed promising antiproliferative activity. It is selective towards cancer cell lines than normal cells. Its ability to penetrate T-47D cell membrane and inhibit ErbB4 kinase inside the cells has been confirmed. Moreover, both compound Ik and IIa have additional merits such as weak potency against hERG ion channels and against CYP 3A4 and 2D6. Molecular docking and dynamic simulation studies were carried out to explain binding interactions.


Subject(s)
Protein Kinase Inhibitors/chemistry , Receptor, ErbB-4/antagonists & inhibitors , Thiazoles/chemistry , Binding Sites , Catalytic Domain , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Design , Drug Screening Assays, Antitumor , Humans , Imidazoles/chemistry , Molecular Docking Simulation , Protein Kinase Inhibitors/metabolism , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Proto-Oncogene Proteins B-raf/metabolism , Receptor, ErbB-4/metabolism , Structure-Activity Relationship , Thiazoles/metabolism , Thiazoles/pharmacology
11.
J Med Chem ; 64(10): 6877-6901, 2021 05 27.
Article in English | MEDLINE | ID: mdl-33999621

ABSTRACT

BRAF is an important component of MAPK cascade. Mutation of BRAF, in particular V600E, leads to hyperactivation of the MAPK pathway and uncontrolled cellular growth. Resistance to selective inhibitors of mutated BRAF is a major obstacle against treatment of many cancer types. In this work, a series of new (imidazo[2,1-b]thiazol-5-yl)pyrimidine derivatives possessing a terminal sulfonamide moiety were synthesized. Pan-RAF inhibitory effect of the new series was investigated, and structure-activity relationship is discussed. Antiproliferative activity of the target compounds was tested against the NCI-60 cell line panel. The most active compounds were further tested to obtain their IC50 values against cancer cells. Compound 27c with terminal open chain sulfonamide and 38a with a cyclic sulfamide moiety showed the highest activity in enzymatic and cellular assay, and both compounds were able to inhibit phosphorylation of MEK and ERK. Compound 38a was selected for testing its in vivo activity against melanoma. Cellular and animal activities are reported.


Subject(s)
Imidazoles/chemistry , Protein Kinase Inhibitors/chemistry , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Thiazoles/chemistry , Animals , Binding Sites , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Evaluation, Preclinical , Drug Screening Assays, Antitumor , Drug Stability , Half-Life , Humans , Imidazoles/metabolism , Melanoma/drug therapy , Melanoma/pathology , Mice , Mitogen-Activated Protein Kinase Kinases/metabolism , Molecular Docking Simulation , Phosphorylation/drug effects , Protein Kinase Inhibitors/metabolism , Protein Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins B-raf/metabolism , Structure-Activity Relationship , Sulfonamides/chemistry , Thiazoles/metabolism , Transplantation, Heterologous
12.
Eur J Med Chem ; 215: 113277, 2021 Apr 05.
Article in English | MEDLINE | ID: mdl-33601311

ABSTRACT

The synergistic effect of dual inhibition of serine/threonine protein kinases that are involved in the same signalling pathway of the diseases can exert superior biological benefits for treatment of these diseases. In the present work, a new series of (imidazol-5-yl)pyrimidine was designed and synthesized as dual inhibitors of BRAFV600E and p38α kinases which are considered as key regulators in mitogen-activated protein kinase (MAPK) signalling pathway. The target compounds were evaluated for dual kinase inhibitory activity. The tested compounds exhibited nanomolar scale IC50 values against BRAFV600E and low to sub-micromolar IC50 range against p38α. Compound 20h was identified as the most potent dual BRAFV600E/p38α inhibitor with IC50 values of 2.49 and 85 nM, respectively. Further deep investigation revealed that compound 20h possesses inhibitory activity of TNF-α production in lipopolysaccharide-induced RAW 264.7 macrophages with IC50 value of 96.3 nM. Additionally, the target compounds efficiently frustrated the proliferation of LOX-IMVI melanoma cell line. Compound 20h showed a satisfactory antiproliferative activity with IC50 value of 13 µM, while, compound 18f exhibited the highest cytotoxicity potency with IC50 value of 0.9 µM. Compound 18f is 11.11-fold more selective toward LOX-IMVI melanoma cells than IOSE-80PC normal cells. The newly reported compounds represent therapeutically promising candidates for further development of BRAFV600E/p38α inhibitors in an attempt to overcome the acquired resistance of BRAF mutant melanoma.


Subject(s)
Imidazoles/pharmacology , Mitogen-Activated Protein Kinase 14/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Pyrimidines/pharmacology , Animals , Catalytic Domain , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Design , Drug Screening Assays, Antitumor , Humans , Imidazoles/chemical synthesis , Imidazoles/metabolism , Mice , Mitogen-Activated Protein Kinase 14/metabolism , Molecular Docking Simulation , Molecular Structure , Mutation , Protein Binding , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/metabolism , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/metabolism , Pyrimidines/chemical synthesis , Pyrimidines/metabolism , Structure-Activity Relationship
13.
Bioorg Med Chem ; 31: 115969, 2021 02 01.
Article in English | MEDLINE | ID: mdl-33422910

ABSTRACT

P38α/MAPK14 is intracellular signalling regulator involved in biosynthesis of inflammatory mediator cytokines (TNF-α, IL-1, IL-6, and IL-1b), which induce the production of inflammatory proteins (iNOS, NF-kB, and COX-2). In this study, drug repurposing strategies were followed to repositioning of a series of B-RAF V600E imidazol-5-yl pyridine inhibitors to inhibit P38α kinase. A group 25 reported P38α kinase inhibitors were used to build a pharmacophore model for mapping the target compounds and proving their affinity for binding in P38α active site. Target compounds were evaluated for their potency against P38α kinase, compounds 11a and 11d were the most potent inhibitors (IC50 = 47 nM and 45 nM, respectively). In addition, compound 11d effectively inhibited the production of proinflammatory cytokinesTNF-α, 1L-6, and 1L-1ß in LPS-induced RAW 264.7 macrophages with IC50 values of 78.03 nM, 17.6 µM and 82.15 nM, respectively. The target compounds were tested for their anti-inflammatory activity by detecting the reduction of Nitric oxide (NO) and prostaglandin (PGE2) production in LPS-stimulated RAW 264.7 macrophages. Compound 11d exhibited satisfied inhibitory activity of the production of PGE2 and NO with IC50 values of 0.29 µM and 0.61 µM, respectively. Molecular dynamics simulations of the most potent inhibitor 11d were carried out to illustrate its conformational stability in the binding site of P38α kinase.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Drug Design , Imidazoles/pharmacology , Protein Kinase Inhibitors/pharmacology , Pyridines/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Dose-Response Relationship, Drug , Humans , Imidazoles/chemical synthesis , Imidazoles/chemistry , Mitogen-Activated Protein Kinase 14/antagonists & inhibitors , Mitogen-Activated Protein Kinase 14/metabolism , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Pyridines/chemical synthesis , Pyridines/chemistry , Structure-Activity Relationship , THP-1 Cells , p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors , p38 Mitogen-Activated Protein Kinases/metabolism
14.
Bioorg Chem ; 106: 104508, 2021 01.
Article in English | MEDLINE | ID: mdl-33280830

ABSTRACT

BRAFV600E mutation has been detected in various malignant tumours. Developing of potent BRAFV600E inhibitors is considered a leading step in the way to cure different cancer types. In the current work, a series of 38 4-(1H-imidazol-5-yl)pyridin-2-amine derivatives was designed and synthesized using Dabrafenib as a lead compound for structural-guided optimization. The target compounds were evaluated as potential anticancer agents against NCI 60 human cancer cell lines. In 5-dose testing mode, two compounds 14h and 16e were tested to determine their IC50 values over each of the 60 cell lines. The selected candidates exhibited promising activity with mean IC50 values of 2.4 µM and 3.6 µM, respectively. Melanoma cancer cell lines exhibited the highest sensitivity after the treatment with the tested compounds 14h and 16e. The mean IC50 values of compounds 14h and 16e against Melanoma cancer cell lines are 1.8 µM and 1.88 µM, respectively. In addition, BRAFV600E kinase inhibitory activity was determined for each derivative. Compounds 15i, 15j, 16a, and 16d were the most potent inhibitors against BRAFV600E with IC50 76 nM, 32 nM, 35 nM, and 68 nM. The newly developed compounds represent a therapeutically promising approach for the treating various cancer types.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Design , Imidazoles/pharmacology , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Sulfonamides/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Imidazoles/chemical synthesis , Imidazoles/chemistry , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Proto-Oncogene Proteins B-raf/metabolism , Structure-Activity Relationship , Sulfonamides/chemistry
15.
J Enzyme Inhib Med Chem ; 35(1): 1712-1726, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32962435

ABSTRACT

A series of imidazothiazole derivatives possessing potential activity against melanoma cells were investigated for molecular mechanism of action. The target compounds were tested against V600E-B-RAF and RAF1 kinases. Compound 1zb is the most potent against both kinases with IC50 values 0.978 and 8.2 nM, respectively. It showed relative selectivity against V600E mutant B-RAF kinase. Compound 1zb was also tested against four melanoma cell lines and exerted superior potency (IC50 0.18-0.59 µM) compared to the reference standard drug, sorafenib (IC50 1.95-5.45 µM). Compound 1zb demonstrated also prominent selectivity towards melanoma cells than normal skin cells. It was further tested in whole-cell kinase assay and showed in-cell V600E-B-RAF kinase inhibition with IC50 of 0.19 µM. Compound 1zb induces apoptosis not necrosis in the most sensitive melanoma cell line, UACC-62. Furthermore, molecular dynamic and 3D-QSAR studies were done to investigate the binding mode and understand the pharmacophoric features of this series of compounds.


Subject(s)
Antineoplastic Agents/chemistry , Melanoma/diet therapy , Protein Kinase Inhibitors/chemistry , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Thiazoles/chemistry , Antineoplastic Agents/pharmacology , Carbamates/chemistry , Carbamates/pharmacology , Cell Line, Tumor , Cell Proliferation , Drug Screening Assays, Antitumor , Humans , Imidazoles/chemistry , Imidazoles/pharmacology , Molecular Dynamics Simulation , Oximes/chemistry , Oximes/pharmacology , Protein Kinase Inhibitors/pharmacology , Quantitative Structure-Activity Relationship , Sorafenib/chemistry , Sorafenib/pharmacology , Sulfonamides/chemistry , Sulfonamides/pharmacology , Thiazoles/pharmacology , Vemurafenib/chemistry , Vemurafenib/pharmacology
16.
Anticancer Res ; 40(9): 5081-5090, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32878796

ABSTRACT

BACKGROUND/AIM: Triple negative breast cancer (TNBC) is an aggressive type of breast cancer with limited targets for chemotherapy. This study evaluated the inhibitory effects of novel imidazo[2,1-b]oxazole-based rapidly accelerated fibrosarcoma (RAF) inhibitors, KIST0215-1 and KIST0215-2, on epithelial cell transformation and TNBC tumorigenesis. MATERIALS AND METHODS: Immunoblotting, BrdU incorporation assay, reporter gene assay, and soft agar assay analyses were performed. In vivo effects were studied using the BALB/c mouse xenograft model. RESULTS: KIST0215-1 and KIST0215-2 inhibited the RAFs-MEK1/2-ERK1/2 signalling pathway induced by EGF in MDA-MB-231 cells, which inhibited c-fos transcriptional activity and activator protein-1 transactivation activity. KIST0215-1 and KIST0215-2 also prevented neoplastic transformation of JB6 C141 mouse epidermal cells induced by EGF and consistently suppressed the growth of tumours formed by 4T1 cells in BALB/c mice. CONCLUSION: Inhibition of RAF kinases using KIST0215-1 and KIST0215-2 is a promising chemotherapeutic strategy to treat TNBC.


Subject(s)
Antineoplastic Agents/pharmacology , Cell Transformation, Neoplastic/drug effects , Epithelial-Mesenchymal Transition/drug effects , Imidazoles/pharmacology , Triple Negative Breast Neoplasms/etiology , Triple Negative Breast Neoplasms/metabolism , Animals , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Disease Models, Animal , Epithelial-Mesenchymal Transition/genetics , Female , Genes, Reporter , Humans , Imidazoles/chemistry , Mice , Molecular Structure , Signal Transduction/drug effects , Triple Negative Breast Neoplasms/pathology , Xenograft Model Antitumor Assays
17.
Bioorg Med Chem Lett ; 30(20): 127478, 2020 10 15.
Article in English | MEDLINE | ID: mdl-32781217

ABSTRACT

B-Raf mutation was identified as a key target in cancer treatment. Based on structural features of dabrafenib (potent FDA approved B-Raf inhibitor), the design of new NH2-based imidazothiazole derivatives was carried out affording new highly potent derivatives of imidazothiazole-based scaffold with amino substitution on the terminal phenyl ring as well as side chain with sulfonamide group and terminal substituted phenyl ring. In vitro enzyme assay was investigated against V600E B-Raf kinase. Compounds 10l, 10n and 10o showed higher inhibitory activities (IC50 = 1.20, 4.31 and 6.21 nM, respectively). In vitro cytotoxicity evaluation was assessed against NCI-60 cell lines. Most of tested derivatives showed cytotoxic activities against melanoma cell line. Compound 10k exhibited most potent activity (IC50 = 2.68 µM). Molecular docking study revealed that the new designed derivatives preserved the same binding mode of dabrafenib with V600E B-Raf active site. It was investigated that the new modification in the synthesized derivatives (substituted with NH2) had a significant inhibitory activity towards V600E B-Raf. This core scaffold is considered a key compound for further structural and molecular optimization.


Subject(s)
Antineoplastic Agents/pharmacology , Molecular Docking Simulation , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Thiazoles/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Proto-Oncogene Proteins B-raf/metabolism , Structure-Activity Relationship , Thiazoles/chemical synthesis , Thiazoles/chemistry
18.
Bioorg Chem ; 100: 103967, 2020 07.
Article in English | MEDLINE | ID: mdl-32470760

ABSTRACT

BRAF mutation is commonly known in a number of human cancer types. It is counted as a potential component in treating cancer. In this study, based on structural optimization of previously reported inhibitors (3-fluro substituted derivatives of imidazo[2,1-b]thiazole-based scaffold), we designed and synthesized sixteen new imidazo[2,1-b]thiazole derivatives with m-nitrophenyl group at position 6. The electron withdrawing properties was reserved while the polarity was modified compared to previously synthesized compounds (-F). Furthermore, the new substituted group (-NO2) provided an additional H-bond acceptor(s) which may bind with the target enzyme through additional interaction(s). In vitro cytotoxicity evaluation was performed against human cancer cell line (A375). In addition, in vitro enzyme assay was performed against mutated B-Raf (B-Raf V600E). Compounds 13a, 13g and 13f showed highest activity on mutated B-Raf with IC50 0.021, 0.035 and 0.020 µM. All target compounds were tested for in vitro cytotoxicity against NCI 60 cell lines. Compounds 13a and 13g were selected for 5 doses test mode. Moreover, in silico molecular simulation was explored in order to explore the possible interactions between the designed compounds and the B-Raf V600E active site.


Subject(s)
Imidazoles/chemistry , Protein Kinase Inhibitors/chemical synthesis , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Thiazoles/chemistry , Binding Sites , Catalytic Domain , Cell Line, Tumor , Cell Survival/drug effects , Drug Design , Drug Screening Assays, Antitumor , Humans , Imidazoles/metabolism , Imidazoles/pharmacology , Molecular Docking Simulation , Mutation , Protein Kinase Inhibitors/metabolism , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/metabolism , Structure-Activity Relationship , Thiazoles/metabolism , Thiazoles/pharmacology , Vemurafenib/pharmacology
19.
Bioorg Chem ; 99: 103783, 2020 06.
Article in English | MEDLINE | ID: mdl-32224334

ABSTRACT

A series of six compounds (1a-f) possessing pyridine-pyrazole-benzenethiourea or pyridine-pyrazole-benzenesulfonamide scaffold were synthesized. The target compounds were screened to evaluate their inhibitory effect on human nucleotide pyrophosphatase/phosphodiesterase 1 and -3 (ENPP1 and ENPP3) isoenzymes. Compounds 1c-e were the most potent inhibitors of ENPP1 with sub-micromolar IC50 values (0.69, 0.18, and 0.40 µM, respectively. Moreover, compound 1b was the most potent inhibitor of ENPP3 (IC50 = 0.21 µM). They were much more potent than the reference standard inhibitor, suramin (IC50 values against ENPP1 and -3 were 7.77 and 0.89 µM, respectively). Furthermore, all the six compounds were investigated for cytotoxic effect against cancerous cell lines (HeLa, MCF-7, and 1321N1) and normal cell line (BHK-21). Compound 1e was active against all the three cancer cell lines, however, showed preferential cytotoxicity against MCF-7 (IC50 = 16.05 µM), which is comparable to the potency of cisplatin. All the tested compounds exhibited low or negligible cytotoxic effect against the normal cells. They have the merit of superior selectivity towards cancer cells than normal cells compared to cisplatin. The relative selectivity and potency of the inhibitors was justified by molecular docking studies. All the docked structures showed considerable binding interactions with amino acids residues of active sites of ENPP isoenzymes.


Subject(s)
Antineoplastic Agents/pharmacology , Enzyme Inhibitors/pharmacology , Pyrazoles/pharmacology , Sulfonamides/pharmacology , Thiourea/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Cells, Cultured , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Humans , Models, Molecular , Molecular Structure , Phosphoric Diester Hydrolases/metabolism , Pyrazoles/chemical synthesis , Pyrazoles/chemistry , Pyrophosphatases/antagonists & inhibitors , Pyrophosphatases/metabolism , Structure-Activity Relationship , Sulfonamides/chemical synthesis , Sulfonamides/chemistry , Thiourea/chemical synthesis , Thiourea/chemistry
20.
Bioorg Med Chem ; 28(11): 115493, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32340792

ABSTRACT

Several pyrrolo[2,3-b]pyridine-based B-RAF inhibitors are well known and some of them are currently FDA approved as anticancer agents. Based on the structure of these FDA approved V600EB-RAF inhibitors, two series of pyrrolo[2,3-b]pyridine scaffold were designed and synthesized in attempt to develop new potent V600EB-RAF inhibitors. The 38 synthesized compounds were biologically evaluated for their V600EB-RAF inhibitory effect at single dose (10 µM). Compounds with high percent inhibition were tested to determine their IC50 over V600EB-RAF. Compounds 34e and 35 showed the highest inhibitory effect with IC50 values of 0.085 µM and 0.080 µM, respectively. Headed for excessive biological evaluation, the synthesized derivatives were tested over sixty diverse human cancer cell lines. Only compound 35 emerged as a potent cytotoxic agent against different panel of human cancer cell lines.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Design , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Pyridines/pharmacology , Pyrroles/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Molecular Docking Simulation , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Proto-Oncogene Proteins B-raf/metabolism , Pyridines/chemical synthesis , Pyridines/chemistry , Pyrroles/chemical synthesis , Pyrroles/chemistry , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...