Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
1.
ArXiv ; 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38584614

RESUMO

DNA regulation and repair processes require direct interactions between proteins and DNA at specific sites. Local fluctuations of the sugar-phosphate backbones and bases of DNA (a form of DNA 'breathing') play a central role in such processes. Here we review the development and application of novel spectroscopic methods and analyses - both at the ensemble and single-molecule levels - to study structural and dynamic properties of exciton-coupled cyanine and fluorescent nucleobase analogue dimer-labeled DNA constructs at key positions involved in protein-DNA complex assembly and function. The exciton-coupled dimer probes act as 'sensors' of the local conformations adopted by the sugar-phosphate backbones and bases immediately surrounding the dimer probes. These methods can be used to study the mechanisms of protein binding and function at these sites.

2.
Nucleic Acids Res ; 52(3): 1272-1289, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38050987

RESUMO

Exciton-coupled chromophore dimers are an emerging class of optical probes for studies of site-specific biomolecular interactions. Applying accurate theoretical models for the electrostatic coupling of a molecular dimer probe is a key step for simulating its optical properties and analyzing spectroscopic data. In this work, we compare experimental absorbance and circular dichroism (CD) spectra of 'internally-labeled' (iCy3)2 dimer probes inserted site-specifically into DNA fork constructs to theoretical calculations of the structure and geometry of these exciton-coupled dimers. We compare transition density models of varying levels of approximation to determine conformational parameters of the (iCy3)2 dimer-labeled DNA fork constructs. By applying an atomistically detailed transition charge (TQ) model, we can distinguish between dimer conformations in which the stacking and tilt angles between planar iCy3 monomers are varied. A major strength of this approach is that the local conformations of the (iCy3)2 dimer probes that we determined can be used to infer information about the structures of the DNA framework immediately surrounding the probes at various positions within the constructs, both deep in the duplex DNA sequences and at sites at or near the DNA fork junctions where protein complexes bind to discharge their biological functions.


Assuntos
DNA , Sondas Moleculares , Ligação Proteica , Conformação de Ácido Nucleico , DNA/química , Dicroísmo Circular , Sítios de Ligação
3.
J Phys Chem B ; 127(50): 10730-10748, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38060691

RESUMO

Local fluctuations of the sugar-phosphate backbones and bases of DNA (often called DNA 'breathing') play a variety of critical roles in controlling the functional interactions of the DNA genome with the protein complexes that regulate it. Here, we present a single-molecule fluorescence method that we have used to measure and characterize such conformational fluctuations at and near biologically important positions in model DNA replication fork constructs labeled with exciton-coupled cyanine [(iCy3)2] dimer probes. Previous work has shown that the constructs that we tested here exhibit a broad range of spectral properties at the ensemble level, and these differences can be structurally and dynamically interpreted using our present methodology at the single-molecule level. The (iCy3)2 dimer has one symmetric (+) and one antisymmetric (-) exciton, with the respective transition dipole moments oriented perpendicular to one another. We excite single-molecule samples using a continuous-wave linearly polarized laser, with the polarization direction continuously rotated at the frequency of 1 MHz. The ensuing fluorescence signal is modulated as the laser polarization alternately excites the symmetric and antisymmetric excitons of the (iCy3)2 dimer probe. Phase-sensitive detection of the modulated signal provides information about the distribution of local conformations and the conformational interconversion dynamics of the (iCy3)2 probe. We find that at most construct positions that we examined, the (iCy3)2 dimer-labeled DNA fork constructs can adopt four topologically distinct conformational macrostates. These results suggest that in addition to observing DNA breathing at and near ss-dsDNA junctions, our new methodology should be useful to determine which of these pre-existing macrostates are recognized by, bind to, and are stabilized by various genome-regulatory proteins.


Assuntos
Replicação do DNA , DNA , DNA/metabolismo , Conformação Molecular , Espectrometria de Fluorescência , Microscopia de Fluorescência
4.
J Phys Chem A ; 127(45): 9530-9540, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37934679

RESUMO

The indocarbocyanine Cy3 dye is widely used to probe the dynamics of proteins and DNA. Excitonically coupled Cy3 dimers exhibit very unique spectral signatures that depend on the interchromophoric geometrical orientation induced by the environment, making them powerful tools to infer the dynamics of their surroundings. Understanding the origin of the dimeric spectral signatures is a necessity for an accurate interpretation of the experimental results. In this work, we simulate the vibronic spectrum of an experimentally well-studied Cy3 dimer, and we explain the origin of the experimental signatures present in its linear absorption spectrum. The Franck-Condon harmonic approximations, among other tests, are used to probe the factors contributing to the spectrum. It is found that the first peak in the absorption spectrum originates from the lower energy excitonic state, while the next two peaks are vibrational progressions of the higher energy excitonic state. The polar solvent plays a crucial role in the appearance of the spectrum, being responsible for the localized S1 minimum, which results in an increased intensity of the first peak.

5.
Nat Commun ; 14(1): 3161, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37258525

RESUMO

The gut microbiome is emerging as a key modulator of human energy balance. Prior studies in humans lacked the environmental and dietary controls and precision required to quantitatively evaluate the contributions of the gut microbiome. Using a Microbiome Enhancer Diet (MBD) designed to deliver more dietary substrates to the colon and therefore modulate the gut microbiome, we quantified microbial and host contributions to human energy balance in a controlled feeding study with a randomized crossover design in young, healthy, weight stable males and females (NCT02939703). In a metabolic ward where the environment was strictly controlled, we measured energy intake, energy expenditure, and energy output (fecal and urinary). The primary endpoint was the within-participant difference in host metabolizable energy between experimental conditions [Control, Western Diet (WD) vs. MBD]. The secondary endpoints were enteroendocrine hormones, hunger/satiety, and food intake. Here we show that, compared to the WD, the MBD leads to an additional 116 ± 56 kcals (P < 0.0001) lost in feces daily and thus, lower metabolizable energy for the host (89.5 ± 0.73%; range 84.2-96.1% on the MBD vs. 95.4 ± 0.21%; range 94.1-97.0% on the WD; P < 0.0001) without changes in energy expenditure, hunger/satiety or food intake (P > 0.05). Microbial 16S rRNA gene copy number (a surrogate of biomass) increases (P < 0.0001), beta-diversity changes (whole genome shotgun sequencing; P = 0.02), and fermentation products increase (P < 0.01) on an MBD as compared to a WD along with significant changes in the host enteroendocrine system (P < 0.0001). The substantial interindividual variability in metabolizable energy on the MBD is explained in part by fecal SCFAs and biomass. Our results reveal the complex host-diet-microbiome interplay that modulates energy balance.


Assuntos
Microbioma Gastrointestinal , Masculino , Feminino , Humanos , Microbioma Gastrointestinal/genética , RNA Ribossômico 16S/genética , Dieta/métodos , Fezes , Dieta Ocidental , Metabolismo Energético
6.
Biotechnol Bioeng ; 120(7): 1844-1856, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37148477

RESUMO

Hydrogen (H2 ) concentrations that were associated with microbiological respiratory processes (RPs) such as sulfate reduction and methanogenesis were quantified in continuous-flow systems (CFSs) (e.g., bioreactors, sediments). Gibbs free energy yield (ΔÇ´ ~ 0) of the relevant RP has been proposed to control the observed H2 concentrations, but most of the reported values do not align with the proposed energetic trends. Alternatively, we postulate that system characteristics of each experimental design influence all system components including H2 concentrations. To analyze this proposal, a Monod-based mathematical model was developed and used to design a gas-liquid bioreactor for hydrogenotrophic methanogenesis with Methanobacterium bryantii M.o.H. Gas-to-liquid H2 mass transfer, microbiological H2 consumption, biomass growth, methane formation, and Gibbs free energy yields were evaluated systematically. Combining model predictions and experimental results revealed that an initially large biomass concentration created transients during which biomass consumed [H2 ]L rapidly to the thermodynamic H2 -threshold (≤1 nM) that triggerred the microorganisms to stop H2 oxidation. With no H2 oxidation, continuous gas-to-liquid H2 transfer increased [H2 ]L to a level that signaled the methanogens to resume H2 oxidation. Thus, an oscillatory H2 -concentration profile developed between the thermodynamic H2 -threshold (≤1 nM) and a low [H2 ]L (~10 nM) that relied on the rate of gas-to-liquid H2 -transfer. The transient [H2 ]L values were too low to support biomass synthesis that could balance biomass losses through endogenous oxidation and advection; thus, biomass declined continuously and disappeared. A stable [H2 ]L (1807 nM) emerged as a result of abiotic H2 -balance between gas-to-liquid H2 transfer and H2 removal via advection of liquid-phase.


Assuntos
Hidrogênio , Modelos Teóricos , Anaerobiose , Biomassa , Reatores Biológicos/microbiologia , Metano
7.
Res Sq ; 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36747835

RESUMO

The gut microbiome is emerging as a key modulator of host energy balance1. We conducted a quantitative bioenergetics study aimed at understanding microbial and host factors contributing to energy balance. We used a Microbiome Enhancer Diet (MBD) to reprogram the gut microbiome by delivering more dietary substrates to the colon and randomized healthy participants into a within-subject crossover study with a Western Diet (WD) as a comparator. In a metabolic ward where the environment was strictly controlled, we measured energy intake, energy expenditure, and energy output (fecal, urinary, and methane)2. The primary endpoint was the within-participant difference in host metabolizable energy between experimental conditions. The MBD led to an additional 116 ± 56 kcals lost in feces daily and thus, lower metabolizable energy for the host by channeling more energy to the colon and microbes. The MBD drove significant shifts in microbial biomass, community structure, and fermentation, with parallel alterations to the host enteroendocrine system and without altering appetite or energy expenditure. Host metabolizable energy on the MBD had quantitatively significant interindividual variability, which was associated with differences in the composition of the gut microbiota experimentally and colonic transit time and short-chain fatty acid absorption in silico. Our results provide key insights into how a diet designed to optimize the gut microbiome lowers host metabolizable energy in healthy humans.

8.
Annu Rev Phys Chem ; 74: 245-265, 2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-36696590

RESUMO

The processes of genome expression, regulation, and repair require direct interactions between proteins and DNA at specific sites located at and near single-stranded-double-stranded DNA (ssDNA-dsDNA) junctions. Here, we review the application of recently developed spectroscopic methods and analyses that combine linear absorbance and circular dichroism spectroscopy with nonlinear 2D fluorescence spectroscopy to study the local conformations and conformational disorder of the sugar-phosphate backbones of ssDNA-dsDNA fork constructs that have been internally labeled with exciton-coupled cyanine (iCy3)2 dimer probes. With the application of these methods, the (iCy3)2 dimer can serve as a reliable probe of the mean local conformations and conformational distributions of the sugar-phosphate backbones of dsDNA at various critical positions. The results of our studies suggest a possible structural framework for understanding the roles of DNA breathing in driving the processes of protein-DNA complex assembly and function.


Assuntos
DNA de Cadeia Simples , DNA , DNA/química , Conformação de Ácido Nucleico , Espectrometria de Fluorescência , Fosfatos , Açúcares
10.
Environ Sci Technol ; 56(17): 12532-12541, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-35993695

RESUMO

Nitrous oxide (N2O) is a greenhouse gas emitted from wastewater treatment, soils, and agriculture largely by ammonium-oxidizing bacteria (AOB). While AOB are characterized by being aerobes that oxidize ammonium (NH4+) to nitrite (NO2-), fundamental studies in microbiology are revealing the importance of metabolic intermediates and reactions that can lead to the production of N2O. These findings about the metabolic pathways for AOB were integrated with thermodynamic electron-equivalents modeling (TEEM) to estimate kinetic and stoichiometric parameters for each of the AOB's nitrogen (N)-oxidation and -reduction reactions. The TEEM analysis shows that hydroxylamine (NH2OH) oxidation to nitroxyl (HNO) is the most energetically efficient means for the AOB to provide electrons for ammonium monooxygenation, while oxidations of HNO to nitric oxide (NO) and NO to NO2- are energetically favorable for respiration and biomass synthesis. The respiratory electron acceptor can be O2 or NO, and both have similar energetics. The TEEM-predicted value for biomass yield, maximum-specific rate of NH4+ utilization, and maximum specific growth rate are consistent with empirical observations. NO reduction to N2O is thermodynamically favorable for respiration and biomass synthesis, but the need for O2 as a reactant in ammonium monooxygenation likely precludes NO reduction to N2O from becoming the major pathway for respiration.


Assuntos
Compostos de Amônio , Óxido Nitroso , Amônia/metabolismo , Compostos de Amônio/metabolismo , Bactérias/metabolismo , Reatores Biológicos/microbiologia , Óxido Nítrico , Nitrificação , Dióxido de Nitrogênio , Óxido Nitroso/metabolismo , Oxirredução , Termodinâmica
11.
Molecules ; 27(13)2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35807308

RESUMO

Accurate modeling of optical spectra requires careful treatment of the molecular structures and vibronic, environmental, and thermal contributions. The accuracy of the computational methods used to simulate absorption spectra is limited by their ability to account for all the factors that affect the spectral shapes and energetics. The ensemble-based approaches are widely used to model the absorption spectra of molecules in the condensed-phase, and their performance is system dependent. The Franck-Condon approach is suitable for simulating high resolution spectra of rigid systems, and its accuracy is limited mainly by the harmonic approximation. In this work, the absorption spectrum of the widely used cyanine Cy3 is simulated using the ensemble approach via classical and quantum sampling, as well as, the Franck-Condon approach. The factors limiting the ensemble approaches, including the sampling and force field effects, are tested, while the vertical and adiabatic harmonic approximations of the Franck-Condon approach are also systematically examined. Our results show that all the vertical methods, including the ensemble approach, are not suitable to model the absorption spectrum of Cy3, and recommend the adiabatic methods as suitable approaches for the modeling of spectra with strong vibronic contributions. We find that the thermal effects, the low frequency modes, and the simultaneous vibrational excitations have prominent contributions to the Cy3 spectrum. The inclusion of the solvent stabilizes the energetics significantly, while its negligible effect on the spectral shapes aligns well with the experimental observations.


Assuntos
Eletrônica , Vibração , Fenômenos Químicos , Estrutura Molecular , Solventes/química
12.
J Chem Phys ; 156(4): 045101, 2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35105081

RESUMO

DNA replication and the related processes of genome expression require binding, assembly, and function of protein complexes at and near single-stranded (ss)-double-stranded (ds) DNA junctions. These central protein-DNA interactions are likely influenced by thermally induced conformational fluctuations of the DNA scaffold across an unknown distribution of functionally relevant states to provide regulatory proteins access to properly conformed DNA binding sites. Thus, characterizing the nature of conformational fluctuations and the associated structural disorder at ss-dsDNA junctions is critical for understanding the molecular mechanisms of these central biological processes. Here, we describe spectroscopic studies of model ss-dsDNA fork constructs that contain dimers of "internally labeled" cyanine (iCy3) chromophore probes that have been rigidly inserted within the sugar-phosphate backbones of the DNA strands. Our combined analyses of absorbance, circular dichroism, and two-dimensional fluorescence spectroscopy permit us to characterize the local conformational parameters and conformational distributions. We find that the DNA sugar-phosphate backbones undergo abrupt successive changes in their local conformations-initially from a right-handed and ordered DNA state to a disordered splayed-open structure and then to a disordered left-handed conformation-as the dimer probes are moved across the ss-dsDNA junction. Our results suggest that the sugar-phosphate backbones at and near ss-dsDNA junctions adopt specific position-dependent local conformations and exhibit varying extents of conformational disorder that deviate widely from the Watson-Crick structure. We suggest that some of these conformations can function as secondary-structure motifs for interaction with protein complexes that bind to and assemble at these sites.


Assuntos
DNA de Cadeia Simples , Quinolinas , Corantes , DNA de Cadeia Simples/química , Conformação de Ácido Nucleico , Fosfatos , Espectrometria de Fluorescência , Açúcares , Temperatura
13.
J Phys Chem A ; 125(36): 7852-7866, 2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34494437

RESUMO

Accurate modeling of excitonic coupling in molecules is of great importance for inferring the structures and dynamics of coupled systems. Cy3 is a cyanine dye that is widely used in molecular spectroscopy. Its well-separated excitation bands, high sensitivity to the surroundings, and the high energy transfer efficiency make it a perfect choice for excitonic coupling experiments. Many methods have been used to model the excitonic coupling in molecules with varying degrees of accuracy. The atomic transition charge model offers a high-accuracy and cost-effective way to calculating the excitonic coupling. The main focus of this work is to generate high-quality atomic transition charges that can accurately model the Cy3 dye's transition density. The transition density of the excitation of the ground to first excited state is calculated using configuration-interaction singles and time-dependent density functional theory and is benchmarked against the algebraic diagrammatic construction method. Using the transition density we derived the atomic transition charges using two approaches: Mulliken population analysis and charges fitted to the transition electrostatic potential. The quality of the charges is examined, and their ability to accurately calculate the excitonic coupling is assessed via comparison to experimental data of an artificial biscyanine construct. Theoretical comparisons to the supermolecule ab initio couplings and the widely used point-dipole approximation are also made. Results show that using the transition electrostatic potential is a reliable approach for generating the transition atomic charges. A high-quality set of charges, that can be used to model the Cy3 dye dimer excitonic coupling with high-accuracy and a reasonable computational cost, is obtained.

14.
Foods ; 10(9)2021 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-34574269

RESUMO

The beer industry is a major producer of solid waste globally, primarily in the form of brewer's spent grain (BSG), which due to its low value has historically been diverted to livestock as feed or to landfills. However, its high moisture content and chemical composition positions BSG as an ideal candidate for further processing with microbial fermentation. Recent research has focused on filamentous fungi and the ability of some species therein to degrade the predominant recalcitrant cellulolignin components of BSG to produce valuable compounds. Many species have been investigated to biovalorize this waste stream, including those in the genuses Aspergillus, Penicillium, Rhyzopus, and Trichoderma, which have been used to produce a wide array of highly valuable enzymes and other functional compounds, and to increase the nutritional value of BSG as an animal feed. This review of recent developments in the application of filamentous fungi for the valorization of BSG discusses the biochemical makeup of BSG, the biological mechanisms underlying fungi's primacy to this application, and the current applications of fungi in this realm.

15.
J Chem Phys ; 155(8): 081501, 2021 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-34470351

RESUMO

Two-photon absorption (TPA) and other nonlinear interactions of molecules with time-frequency-entangled photon pairs have been predicted to display a variety of fascinating effects. Therefore, their potential use in practical quantum-enhanced molecular spectroscopy requires close examination. This Tutorial presents a detailed theoretical study of one- and two-photon absorption by molecules, focusing on how to treat the quantum nature of light. We review some basic quantum optics theory and then we review the density-matrix (Liouville) derivation of molecular optical response, emphasizing how to incorporate quantum states of light into the treatment. For illustration, we treat in detail the TPA of photon pairs created by spontaneous parametric down conversion, with an emphasis on how quantum light TPA differs from that with classical light. In particular, we treat the question of how much enhancement of the TPA rate can be achieved using entangled states. This Tutorial includes a review of known theoretical methods and results as well as some extensions, especially the comparison of TPA processes that occur via far-off-resonant intermediate states only and those that involve off-resonant intermediate states by virtue of dephasing processes. A brief discussion of the main challenges facing experimental studies of entangled two-photon absorption is also given.

16.
J Phys Chem B ; 125(33): 9426-9440, 2021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-34379430

RESUMO

Thermally driven conformational fluctuations (or "breathing") of DNA play important roles in the function and regulation of the "macromolecular machinery of genome expression." Fluctuations in double-stranded (ds) DNA are involved in the transient exposure of pathways to protein binding sites within the DNA framework, leading to the binding of regulatory proteins to single-stranded (ss) DNA templates. These interactions often require that the ssDNA sequences, as well as the proteins involved, assume transient conformations critical for successful binding. Here, we use microsecond-resolved single-molecule Förster resonance energy transfer (smFRET) experiments to investigate the backbone fluctuations of short [oligo(dT)n] templates within DNA constructs that also serve as models for ss-dsDNA junctions. Such junctions, together with the attached ssDNA sequences, are involved in interactions with the ssDNA binding (ssb) proteins that control and integrate the functions of DNA replication complexes. We analyze these data using a chemical network model based on multiorder time-correlation functions and probability distribution functions that characterize the kinetic and thermodynamic behavior of the system. We find that the oligo(dT)n tails of ss-dsDNA constructs interconvert, on submillisecond time scales, between three macrostates with distinctly different end-to-end distances. These are (i) a "compact" macrostate that represents the dominant species at equilibrium; (ii) a "partially extended" macrostate that exists as minority species; and (iii) a "highly extended" macrostate that is present in trace amounts. We propose a model for ssDNA secondary structure that advances our understanding of how spontaneously formed nucleic acid conformations may facilitate the activities of ssDNA-associating proteins.


Assuntos
DNA de Cadeia Simples , Transferência Ressonante de Energia de Fluorescência , Replicação do DNA , Proteínas de Ligação a DNA/metabolismo , Conformação de Ácido Nucleico , Ligação Proteica
17.
PLoS One ; 16(7): e0253542, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34319981

RESUMO

BACKGROUND: The large intestine provides a compensatory role in energy recovery when surgical interventions such as extensive small intestinal resections or bypass operations lower the efficiency of nutrient absorption in the upper gastrointestinal (GI) tract. While microorganisms in the colon are known to play vital roles in recovering energy, their contributions remain to be qualified and quantified in the small intestine resection. OBJECTIVE: We develop a mathematical model that links nutrient absorption in the upper and lower GI tract in two steps. METHODS: First, we describe the effects of small intestine resection on the ileocecal output (ICO), which enters the colon and provides food for microbes. Second, we describe energy recovered by the colon's microorganisms via short-chain fatty acid (SCFA) production. We obtain model parameters by performing a least-squares regression analysis on clinical data for subjects with normal physiology and those who had undergone small intestine resection. RESULTS: For subjects with their intestines intact, our model provided a metabolizable energy value that aligns well with the traditional Atwater coefficients. With removal of the small intestine, physiological absorption became less efficient, and the metabolizable energy decreased. In parallel, the inefficiencies in physiological absorption by the small intestine are partly compensated by production of short-chain fatty acids (SCFA) from proteins and carbohydrates by microorganisms in the colon. The colon recovered more than half of the gross energy intake when the entire small intestine was removed. Meanwhile, the quality of energy absorbed changed, because microbe-derived SCFAs, not the original components of food, become the dominant form of absorbed energy. CONCLUSION: The mathematical model developed here provides an important framework for describing the effect of clinical interventions on the colon's microorganisms.


Assuntos
Colo/microbiologia , Microbioma Gastrointestinal , Intestino Delgado/cirurgia , Fezes/microbiologia , Feminino , Humanos , Masculino , Modelos Teóricos
18.
Opt Express ; 29(13): 20022-20033, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34266101

RESUMO

When a low flux of time-frequency-entangled photon pairs (EPP) illuminates a two-photon transition, the rate of two-photon absorption (TPA) can be enhanced considerably by the quantum nature of photon number correlations and frequency correlations. We use a quantum-theoretic derivation of entangled TPA (ETPA) and calculate an upper bound on the amount of quantum enhancement that is possible in such systems. The derived bounds indicate that in order to observe ETPA the experiments would need to operate at a combination of significantly higher rates of EPP illumination, molecular concentrations, and conventional TPA cross sections than are achieved in typical experiments.

19.
Nucleic Acids Res ; 49(4): 1872-1885, 2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33503257

RESUMO

Regulatory protein access to the DNA duplex 'interior' depends on local DNA 'breathing' fluctuations, and the most fundamental of these are thermally-driven base stacking-unstacking interactions. The smallest DNA unit that can undergo such transitions is the dinucleotide, whose structural and dynamic properties are dominated by stacking, while the ion condensation, cooperative stacking and inter-base hydrogen-bonding present in duplex DNA are not involved. We use dApdA to study stacking-unstacking at the dinucleotide level because the fluctuations observed are likely to resemble those of larger DNA molecules, but in the absence of constraints introduced by cooperativity are likely to be more pronounced, and thus more accessible to measurement. We study these fluctuations with a combination of Molecular Dynamics simulations on the microsecond timescale and Markov State Model analyses, and validate our results by calculations of circular dichroism (CD) spectra, with results that agree well with the experimental spectra. Our analyses show that the CD spectrum of dApdA is defined by two distinct chiral conformations that correspond, respectively, to a Watson-Crick form and a hybrid form with one base in a Hoogsteen configuration. We find also that ionic structure and water orientation around dApdA play important roles in controlling its breathing fluctuations.


Assuntos
DNA/química , Fosfatos de Dinucleosídeos/química , Dicroísmo Circular , Íons/química , Cadeias de Markov , Modelos Moleculares , Cloreto de Sódio/química , Água/química
20.
Curr Opin Biotechnol ; 67: 49-57, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33465544

RESUMO

Interspecies electron transfer (IET) is a key phenomenon in anaerobic ecosystems, which is traditionally modeled as hydrogen transfer. Recently discovered alternative mediated IET (MIET) or direct IET (DIET) offer exciting alternative mechanisms of microbial partnerships that could lead to new strategies for the improvement of biotechnologies. Here, we analyze mathematical modeling of DIET and MIET in anaerobic ecosystems. Bioenergetics approaches already enable the evaluation of different energy sharing scenarios between microorganisms and give interesting clues on redox mediators and on possible ways of driving microbial communities relying on IET. The modeling of DIET kinetics however is currently only in its infancy. Recent concepts introduced for the modeling of electroactive biofilms should be further exploited. Recent modeling examples confirms the potential of DIET to increase the IET rates compared to H2-MIET, but also point out the need for additional characterizations of biological components supporting IET to improve predictions.


Assuntos
Elétrons , Microbiota , Anaerobiose , Transporte de Elétrons , Metano , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...