Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 11976, 2024 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-38796616

RESUMO

Hydrocarbon contamination, including contamination with polycyclic aromatic hydrocarbons (PAHs), is a major concern in Antarctica due to the toxicity, recalcitrance and persistence of these compounds. Under the Antarctic Treaty, nonindigenous species are not permitted for use in bioremediation at polluted sites in the Antarctic region. In this study, three bacterial consortia (C13, C15, and C23) were isolated from Antarctic soils for phenanthrene degradation. All isolated bacterial consortia demonstrated phenanthrene degradation percentages ranging from 45 to 85% for 50 mg/L phenanthrene at 15 â„ƒ within 5 days. Furthermore, consortium C13 exhibited efficient phenanthrene degradation potential across a wide range of environmental conditions, including different temperature (4-30 â„ƒ) and water availability (without polyethylene glycol (PEG) 6000 or 30% PEG 6000 (w/v)) conditions. Sequencing analysis of 16S rRNA genes revealed that Pseudomonas and Pseudarthrobacter were the dominant genera in the phenanthrene-degrading consortia. Moreover, six cultivable strains were isolated from these consortia, comprising four strains of Pseudomonas, one strain of Pseudarthrobacter, and one strain of Paeniglutamicibacter. These isolated strains exhibited the ability to degrade 50 mg/L phenanthrene, with degradation percentages ranging from 4 to 22% at 15 â„ƒ within 15 days. Additionally, the constructed consortia containing Pseudomonas spp. and Pseudarthrobacter sp. exhibited more effective phenanthrene degradation (43-52%) than did the individual strains. These results provide evidence that Pseudomonas and Pseudarthrobacter can be potential candidates for synergistic phenanthrene degradation at low temperatures. Overall, our study offers valuable information for the bioremediation of PAH contamination in Antarctic environments.


Assuntos
Biodegradação Ambiental , Fenantrenos , Pseudomonas , Fenantrenos/metabolismo , Pseudomonas/metabolismo , Pseudomonas/genética , Temperatura Baixa , RNA Ribossômico 16S/genética , Microbiologia do Solo , Poluentes do Solo/metabolismo , Regiões Antárticas , Consórcios Microbianos , Filogenia
2.
Chemosphere ; 340: 139934, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37619752

RESUMO

Oil spillage has serious adverse effects on marine environments. The degradation of crude oil by microorganisms may be an effective and sustainable approach. In this study, the removal of crude oil from seawater by immobilized bacterial consortium was performed and the enhancement of crude oil degradation efficiency by varying immobilization methods and inoculum volume ratio was examined. The nonpathogenic and heavy metal-tolerant bacterial consortium of Sphingobium naphthae MO2-4 and Priestia aryabhattai TL01-2 was immobilized by biofilm formation on aquaporousgels. The simultaneous immobilization of strains MO2-4 and TL01-2 showed better crude oil removal efficiency than independent immobilization, which indicated positive interactions among consortium members in the mixed-culture immobilized systems. Moreover, the immobilized consortium at a 2:1 (MO2-4:TL01-2) inoculum volume ratio showed the best crude oil removal capacity. The immobilized consortium removed 77% of 2000 mg L-1 crude oil in seawater over 7 days. The immobilized consortium maintained crude oil removal efficacy in semicontinuous experiments. In addition, the immobilized consortium was used to remediate seawater contaminated with 1000 mg L-1 crude oil in a 20 L wave tank. After 28 days, the crude oil degradation efficiency of immobilized consortium was approximately 70%, and crude oil degradation through natural attenuation was not observed. Moreover, the genomic features of strains MO2-4 and TL01-2 are reported. Genomic analyses of both strains confirmed the presence of many genes involved in hydrocarbon degradation, heavy metal resistance, biosurfactant synthesis, and biofilm formation, supporting the biodegradation results and characterizing strain properties. The results of this work introduce the potential benefit of simultaneous immobilization of bacterial consortia to improve efficiency of crude oil biodegradation and has motivated further investigations into large-scale remediation of crude oil-contaminated seawater.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Petróleo , Humanos , Biodegradação Ambiental , Água do Mar
3.
Chemosphere ; 282: 130973, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34091296

RESUMO

Nonpathogenic effective bacterial hydrocarbon degraders, Rhodococcus ruber S103, Mycolicibacterium parafortuitum J101 and Mycolicibacterium austroafricanum Y502, were isolated from mixed polycyclic aromatic hydrocarbon (PAH)-enriched river sediments. They possessed broad substrate specificities toward various PAHs and aliphatic compounds as sole carbon sources. These strains exhibited promising characteristics, including biosurfactant production, high cell hydrophobicity, biofilm formation and no antagonistic interactions, and contained genes encoding hydrocarbon-degrading enzymes. The mixed bacterial consortium combining S103, J101 and Y502, showed more effective syntrophic degradation of two types of refined petroleum products, diesel and fuel oils, than monocultures. The defined consortium immobilized on plastic balls achieved over 50% removal efficiency of high fuel oil concentration (3000 mg L-1) in a synthetic medium and contaminated freshwater. Furthermore, the immobilized cells simultaneously degraded more than 46% of total fuel oil adsorbed on plastic balls in both culture systems. SEM imaging confirmed that the immobilized consortium exhibited biofilm formation with the bacterial community covering most of the bioball surface, resulting in high bacterial survival against toxic contaminants. The results of this study showed the potential use of the cooperative interaction between Rhodococcus and Mycolicibacterium as immobilized bioballs for the bioremediation of fuel oil-contaminated environments. Additionally, this research has motivated further investigations into the development of bioremediation products for fuel oil degradation.


Assuntos
Óleos Combustíveis , Petróleo , Rhodococcus , Biodegradação Ambiental , Água Doce , Mycobacteriaceae , Rhodococcus/genética
4.
Chemosphere ; 250: 126303, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32120151

RESUMO

This study demonstrates the feasibility of using Exiguobacterium sp. AO-11 to remediate oil-contaminated environments. Bioaugmentation using AO-11 showed the best removal percentage, 75%, of 4% (w/w) crude oil in sediment microcosms in 100 days. In terms of the bacterial community structure during crude oil degradation, the addition of AO-11 did not change the indigenous bacterial community, while the addition of urea fertilizer induced structural shift of indigenous bacterial community. Exiguobacterium sp. AO-11 was developed as a bioremediation product, and a liquid formulation of AO-11 was developed. Coconut milk residue and soybean oil mill sludge were used for bacterial cultivation to reduce the production cost, and they could enhance bacterial cell growth. The liquid formulation of AO-11 prepared in phosphate buffer could be stored at 4 °C for at least 2 months, and it maintained efficacy in the treatment of crude oil-contaminated seawater. Overall, bioaugmentation with strain AO-11 could be an effective solution for the bioremediation of crude oil-contaminated environments.


Assuntos
Biodegradação Ambiental , Petróleo/metabolismo , Bacillaceae/metabolismo , Bactérias/metabolismo , Fertilizantes , Poluição por Petróleo , Água do Mar/química , Microbiologia do Solo
5.
Artigo em Inglês | MEDLINE | ID: mdl-33555249

RESUMO

A novel bacterium, designated strain ANT13_2T, was isolated from a phenanthrene-degrading consortium enriched from a soil sample collected near the Great Wall Station located in the southwestern area of King George Island, Antarctica. Following a polyphasic taxonomic study, a novel species belonging to the genus Paeniglutamicibacter was described. The strain was a Gram-stain-positive bacterium that exhibited a rod-coccus growth cycle. Strain ANT13_2T grew aerobically at an optimum temperature of 20-25 °C and at pH 7.0-8.0. Ribose, arabinose and glucose were detected as whole-cell sugars. The predominant menaquinone was MK-9. The diagnostic phospholipids were diphosphatidylglycerol, phosphatidylglycerol and an unidentified phospholipid. The predominant cellular fatty acids were anteiso-C15 : 0 (67.7 %) and anteiso-C17 : 0 (11.2 %). The DNA G+C content of the genomic DNA was 60.6 mol%. Based on 16S rRNA gene sequence analysis, strain ANT13_2T showed the highest similarities to Paeniglutamicibacter antarcticus SPC26T (98.9 %) followed by Paeniglutamicibacter gangotriensis Lz1yT (98.4 %), Paeniglutamicibacter sulfureus DSM 20167T (98.3%) and Paeniglutamicibacter kerguelensis KGN15T (97.9 %). The average nucleotide identity values between strain ANT13_2T and the type strains of P. antarcticus SPC26T and P. gangotriensis Lz1yT were 73.8 and 77.5 %, respectively, which are well below the 95-96 % species circumscription threshold. On the basis of this polyphasic taxonomic study, strain ANT13_2T is proposed to represent a novel species to be named Paeniglutamicibacter terrestris sp. nov. The type strain is ANT13_2T (=TBRC 11756T=NBRC 114615T).

6.
Environ Sci Pollut Res Int ; 25(27): 26927-26938, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30008160

RESUMO

Serratia sp. W4-01 was immobilized in chitosan-activated carbon beads and used for diesel oil removal. The type and concentration of chitosan, activated carbon content, and bead diameter were investigated as factors affecting diesel oil removal. The results showed that 2% (w/v) squid pen chitosan beads modified with 1% activated carbon (w/v) and with a 3-mm diameter had a good spherical shape and strength as well as diesel oil removal capability. The immobilized W4-01 cells removed more than 40% of diesel oil after 7 days when the initial diesel oil concentration was 100 to 400 mg L-1, whereas 29-36% of diesel oil was removed after 14 days when the initial concentration was 800 to 1000 mg L-1. Additionally, the immobilized cells maintained the ability to remove diesel oil over a pH range of 5-11. The addition of a biosurfactant increased the diesel oil removal from 62 to 75%. The reusability tests revealed that the ability of immobilized cells to remove diesel oil was enhanced after reuse, and 50-90% of diesel oil was removed during 2 to 12 reuse cycles. The stability and survival of W4-01 cells was confirmed by scanning electron microscopy and confocal laser scanning microscopy. The results of this study showed the potential use of W4-01 cells immobilized in chitosan-activated carbon beads for future applications in remediating diesel contamination.


Assuntos
Quitosana/química , Óleos Combustíveis/microbiologia , Serratia/metabolismo , Células Imobilizadas , Carvão Vegetal , Enzimas Imobilizadas/química , Óleos Combustíveis/análise , Gasolina , Concentração de Íons de Hidrogênio , Microscopia Eletrônica de Varredura
7.
J Hazard Mater ; 357: 119-127, 2018 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-29870896

RESUMO

A bacterial consortium, named SWO, was enriched from crude oil-contaminated seawater from Phrao Bay in Rayong Province, Thailand, after a large oil spill in 2013. The bacterial consortium degraded a polycyclic aromatic hydrocarbon (PAH) mixture consisting of phenanthrene, anthracene, fluoranthene, and pyrene (50 mg L-1 each) by approximately 73%, 69%, 52%, and 48%, respectively, within 21 days. This consortium exhibited excellent adaptation to a wide range of environmental conditions. It could degrade a mixture of four PAHs under a range of pH values (4.0-9.0), temperatures (25 °C-37 °C), and salinities (0-10 g L-1 with NaCl). In addition, this consortium degraded 20-30% of benzo[a]pyrene and perylene (10 mg L-1 each), high molecular weight PAHs, in the presence of other PAHs within 35 days, and degraded 40% of 2% (v/v) crude oil within 20 days. The 16S rRNA gene amplicon sequencing analysis demonstrated that Pseudomonas and Methylophaga were the dominant genera of consortium SWO in almost all treatments, while Pseudidiomarina, Thalassospira and Alcanivorax were predominant under higher salt concentrations. Moreover, Pseudomonas and Alcanivorax were dominant in the crude oil-degradation treatment. Our results suggest that the consortium SWO maintained its biodegradation ability by altering the bacterial community profile upon encountering changes in the environmental conditions.


Assuntos
Petróleo/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Água do Mar/microbiologia , Poluentes Químicos da Água/metabolismo , Bactérias/genética , Bactérias/metabolismo , Biodegradação Ambiental , Metagenômica , RNA Ribossômico 16S
8.
J Hazard Mater ; 342: 561-570, 2018 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-28886568

RESUMO

A pyrene-degrading microbial consortium was obtained after enrichment with mangrove sediment collected from Thailand. Five cultivable bacteria (Mycobacterium spp. PO1 and PO2, Novosphingobium pentaromativorans PY1, Ochrobactrum sp. PW1, and Bacillus sp. FW1) were successfully isolated from the consortium. Draft genomes of them showed that two different morphotypes of Mycobacterium (PO1 and PO2), possessed a complete gene set for pyrene degradation. PY1 contained genes for phthalate assimilation via protocatechuate, a central intermediate, by meta-cleavage pathway, and PW1 possessed genes for protocatechuate degradation via ortho-cleavage pathway. The occurrence of biosurfactant-producing genes in FW1 suggests the involvement in enhancing the pyrene bioavailability. Biotransformation experiments revealed that Mycobacterium completely degraded 100mgL-1 pyrene within six days, whereas no significant degradation was observed with the others. Notably, PY1 and PW1 exhibited higher activity for protocatechuate degradation than the others. The artificially reconstructed consortia containing Mycobacterium with the other three strains (PY1, PW1 and FW1) showed three-fold higher degradation rate for pyrene than the individual Mycobacterium. The enhanced pyrene biodegradation achieved in the consortium was due to the cooperative interaction of bacterial mixture. Our findings showing that synergistic degradation of pyrene in the consortium will facilitate the application of the defined bacterial consortium in bioremediation.


Assuntos
Mycobacterium/metabolismo , Pirenos/metabolismo , Biodegradação Ambiental , Sedimentos Geológicos , Mycobacterium/química , Pirenos/química
9.
Environ Sci Pollut Res Int ; 24(5): 4591-4602, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27957694

RESUMO

This study assessed the biodegradation of mixtures of polycyclic aromatic hydrocarbons (PAHs) by indigenous bacteria in river sediment. Microcosms were constructed from sediment from the Chao Phraya River (the main river in Thailand) by supplementation with high concentrations of fluorene, phenanthrene, pyrene (300 mg kg-1 of each PAH), and acenaphthene (600 mg kg-1). Fluorene and phenanthrene were completely degraded, whereas 50% of the pyrene and acenaphthene were removed at the end of the incubation period (70 days). Community analyses revealed the dynamics of the bacterial profiles in the PAH-degrading microcosms after PAH exposure. Actinobacteria predominated and became significantly more abundant in the microcosms after 14 days of incubation at room temperature under aerobic conditions. Furthermore, the remaining PAHs and alpha diversity were positively correlated. The sequencing of clone libraries of the PAH-RHDα genes also revealed that the dioxygenase genes of Mycobacterium sp. comprised 100% of the PAH-RHDα library at the end of the microcosm setup. Moreover, two PAH-degrading Actinobacteria (Arthrobacter sp. and Rhodococcus ruber) were isolated from the original sediment sample and showed high activity in the degradation of phenanthrene and fluorene in liquid cultivation. This study reveals that indigenous bacteria had the ability to degrade high concentrations of mixed PAHs and provide clear evidence that Actinobacteria may be potential candidates to play a major role in PAH degradation in the river sediment.


Assuntos
Sedimentos Geológicos/microbiologia , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Bactérias/metabolismo , Biodegradação Ambiental , Rios , Tailândia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...