Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
J Clin Med ; 13(7)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38610832

RESUMO

Background: Autism spectrum disorder (ASD) is a complex neurodevelopmental condition characterized by social communication challenges and repetitive behaviors. Recent research has increasingly focused on the genetic underpinnings of ASD, with the Neurexin 1 (NRXN1) gene emerging as a key player. This comprehensive systematic review elucidates the contribution of NRXN1 gene variants in the pathophysiology of ASD. Methods: The protocol for this systematic review was designed a priori and was registered in the PROSPERO database (CRD42023450418). A risk of bias analysis was conducted using the Joanna Briggs Institute (JBI) critical appraisal tool. We examined various studies that link NRXN1 gene disruptions with ASD, discussing both the genotypic variability and the resulting phenotypic expressions. Results: Within this review, there was marked heterogeneity observed in ASD genotypic and phenotypic manifestations among individuals with NRXN1 mutations. The presence of NRXN1 mutations in this population emphasizes the gene's role in synaptic function and neural connectivity. Conclusion: This review not only highlights the role of NRXN1 in the pathophysiology of ASD but also highlights the need for further research to unravel the complex genetic underpinnings of the disorder. A better knowledge about the multifaceted role of NRXN1 in ASD can provide crucial insights into the neurobiological foundations of autism and pave the way for novel therapeutic strategies.

2.
bioRxiv ; 2023 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-37961635

RESUMO

As genetic studies continue to identify risk loci that are significantly associated with risk for neuropsychiatric disease, a critical unanswered question is the extent to which diverse mutations--sometimes impacting the same gene-- will require tailored therapeutic strategies. Here we consider this in the context of rare neuropsychiatric disorder-associated copy number variants (2p16.3) resulting in heterozygous deletions in NRXN1, a pre-synaptic cell adhesion protein that serves as a critical synaptic organizer in the brain. Complex patterns of NRXN1 alternative splicing are fundamental to establishing diverse neurocircuitry, vary between the cell types of the brain, and are differentially impacted by unique (non-recurrent) deletions. We contrast the cell-type-specific impact of patient-specific mutations in NRXN1 using human induced pluripotent stem cells, finding that perturbations in NRXN1 splicing result in divergent cell-type-specific synaptic outcomes. Via distinct loss-of-function (LOF) and gain-of-function (GOF) mechanisms, NRXN1+/- deletions cause decreased synaptic activity in glutamatergic neurons, yet increased synaptic activity in GABAergic neurons. Stratification of patients by LOF and GOF mechanisms will facilitate individualized restoration of NRXN1 isoform repertoires; towards this, antisense oligonucleotides knockdown mutant isoform expression and alters synaptic transcriptional signatures, while treatment with ß-estradiol rescues synaptic function in glutamatergic neurons. Given the increasing number of mutations predicted to engender both LOF and GOF mechanisms in brain disease, our findings add nuance to future considerations of precision medicine.

3.
Cell Genom ; 3(8): 100356, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37601975

RESUMO

While germline copy-number variants (CNVs) contribute to schizophrenia (SCZ) risk, the contribution of somatic CNVs (sCNVs)-present in some but not all cells-remains unknown. We identified sCNVs using blood-derived genotype arrays from 12,834 SCZ cases and 11,648 controls, filtering sCNVs at loci recurrently mutated in clonal blood disorders. Likely early-developmental sCNVs were more common in cases (0.91%) than controls (0.51%, p = 2.68e-4), with recurrent somatic deletions of exons 1-5 of the NRXN1 gene in five SCZ cases. Hi-C maps revealed ectopic, allele-specific loops forming between a potential cryptic promoter and non-coding cis-regulatory elements upon 5' deletions in NRXN1. We also observed recurrent intragenic deletions of ABCB11, encoding a transporter implicated in anti-psychotic response, in five treatment-resistant SCZ cases and showed that ABCB11 is specifically enriched in neurons forming mesocortical and mesolimbic dopaminergic projections. Our results indicate potential roles of sCNVs in SCZ risk.

4.
Front Mol Neurosci ; 16: 1191323, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37441676

RESUMO

Multiple molecular pathways and cellular processes have been implicated in the neurobiology of autism and other neurodevelopmental conditions. There is a current focus on synaptic gene conditions, or synaptopathies, which refer to clinical conditions associated with rare genetic variants disrupting genes involved in synaptic biology. Synaptopathies are commonly associated with autism and developmental delay and may be associated with a range of other neuropsychiatric outcomes. Altered synaptic biology is suggested by both preclinical and clinical studies in autism based on evidence of differences in early brain structural development and altered glutamatergic and GABAergic neurotransmission potentially perturbing excitatory and inhibitory balance. This review focusses on the NRXN-NLGN-SHANK pathway, which is implicated in the synaptic assembly, trans-synaptic signalling, and synaptic functioning. We provide an overview of the insights from preclinical molecular studies of the pathway. Concentrating on NRXN1 deletion and SHANK3 mutations, we discuss emerging understanding of cellular processes and electrophysiology from induced pluripotent stem cells (iPSC) models derived from individuals with synaptopathies, neuroimaging and behavioural findings in animal models of Nrxn1 and Shank3 synaptic gene conditions, and key findings regarding autism features, brain and behavioural phenotypes from human clinical studies of synaptopathies. The identification of molecular-based biomarkers from preclinical models aims to advance the development of targeted therapeutic treatments. However, it remains challenging to translate preclinical animal models and iPSC studies to interpret human brain development and autism features. We discuss the existing challenges in preclinical and clinical synaptopathy research, and potential solutions to align methodologies across preclinical and clinical research. Bridging the translational gap between preclinical and clinical studies will be necessary to understand biological mechanisms, to identify targeted therapies, and ultimately to progress towards personalised approaches for complex neurodevelopmental conditions such as autism.

5.
Brain Behav Immun ; 111: 32-45, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37004758

RESUMO

The molecular pathological mechanisms underlying schizophrenia remain unclear; however, genomic analysis has identified genes encoding important risk molecules. One such molecule is neurexin 1α (NRXN1α), a presynaptic cell adhesion molecule. In addition, novel autoantibodies that target the nervous system have been found in patients with encephalitis and neurological disorders. Some of these autoantibodies inhibit synaptic antigen molecules. Studies have examined the association between schizophrenia and autoimmunity; however, the pathological data remain unclear. Here, we identified a novel autoantibody against NRXN1α in patients with schizophrenia (n = 2.1%) in a Japanese cohort (n = 387). None of the healthy control participants (n = 362) were positive for anti-NRXN1α autoantibodies. Anti-NRXN1α autoantibodies isolated from patients with schizophrenia inhibited the molecular interaction between NRXN1α and Neuroligin 1 (NLGN1) and between NRXN1α and Neuroligin 2 (NLGN2). Additionally, these autoantibodies reduced the frequency of the miniature excitatory postsynaptic current in the frontal cortex of mice. Administration of anti-NRXN1α autoantibodies from patients with schizophrenia into the cerebrospinal fluid of mice reduced the number of spines/synapses in the frontal cortex and induced schizophrenia-related behaviors such as reduced cognition, impaired pre-pulse inhibition, and reduced social novelty preference. These changes were improved through the removal of anti-NRXN1α autoantibodies from the IgG fraction of patients with schizophrenia. These findings demonstrate that anti-NRXN1α autoantibodies transferred from patients with schizophrenia cause schizophrenia-related pathology in mice. Removal of anti-NRXN1α autoantibodies may be a therapeutic target for a subgroup of patients who are positive for these autoantibodies.


Assuntos
Esquizofrenia , Camundongos , Animais , Esquizofrenia/genética , Proteínas de Ligação ao Cálcio/metabolismo , Moléculas de Adesão de Célula Nervosa/genética , Moléculas de Adesão de Célula Nervosa/metabolismo , Autoanticorpos/metabolismo , Fenótipo
6.
Int J Mol Sci ; 24(3)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36768419

RESUMO

The cell adhesion molecule L1 is essential not only for neural development, but also for synaptic functions and regeneration after trauma in adulthood. Abnormalities in L1 functions cause developmental and degenerative disorders. L1's functions critically depend on proteolysis which underlies dynamic cell interactions and signal transduction. We showed that a 70 kDa fragment (L1-70) supports mitochondrial functions and gene transcription. To gain further insights into L1-70's functions, we investigated several binding partners. Here we show that L1-70 interacts with topoisomerase 1 (TOP1), peroxisome proliferator-activated receptor γ (PPARγ) and NADH dehydrogenase (ubiquinone) flavoprotein 2 (NDUFV2). TOP1, PPARγ and NDUFV2 siRNAs reduced L1-dependent neurite outgrowth, and the topoisomerase inhibitors topotecan and irinotecan inhibited L1-dependent neurite outgrowth, neuronal survival and migration. In cultured neurons, L1 siRNA reduces the expression levels of the long autism genes neurexin-1 (Nrxn1) and neuroligin-1 (Nlgn1) and of the mitochondrially encoded gene NADH:ubiquinone oxidoreductase core subunit 2 (ND2). In mutant mice lacking L1-70, Nrxn1 and Nlgn1, but not ND2, mRNA levels are reduced. Since L1-70's interactions with TOP1, PPARγ and NDUFV2 contribute to the expression of two essential long autism genes and regulate important neuronal functions, we propose that L1 may not only ameliorate neurological problems, but also psychiatric dysfunctions.


Assuntos
Molécula L1 de Adesão de Célula Nervosa , Animais , Camundongos , Complexo I de Transporte de Elétrons/metabolismo , Flavoproteínas/metabolismo , Expressão Gênica , NADH Desidrogenase/genética , NADH Desidrogenase/metabolismo , Molécula L1 de Adesão de Célula Nervosa/metabolismo , Neuritos/metabolismo , Neurônios/metabolismo , PPAR gama/genética , PPAR gama/metabolismo , Ubiquinona/metabolismo , DNA Topoisomerases Tipo I/metabolismo
7.
J Neurodev Disord ; 15(1): 6, 2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36737720

RESUMO

BACKGROUND: Neurodevelopmental disorders (NDDs) are a group of disorders induced by abnormal brain developmental processes. The prefrontal cortex (PFC) plays an essential role in executive function, and its role in NDDs has been reported. NDDs are associated with high-risk gene mutations and share partially overlapping genetic abnormalities. METHODS: Neurexins (NRXNs) are related to autism spectrum disorder (ASD) and attention-deficit hyperactivity disorder (ADHD). NRXN1, an essential susceptibility gene for NDDs, has been reported to be associated with NDDs. However, little is known about its key role in NDDs. RESULTS: NRXN1 downregulation in the medial PFC induced anxiety-like behaviors and abnormal social phenotypes with impaired neurite outgrowth in Sh-NRXN1 in prefrontal neurons. Moreover, tandem mass tag (TMT)-based proteomic analysis of rat brain samples showed that NRXN1 downregulation led to significant proteome alterations, including pathways related to the extracellular matrix, cell membrane, and morphologic change. Furthermore, full-automatic immunoblotting analysis verified the differently expressed proteins related to cell morphology and membrane structure. CONCLUSIONS: Our results confirmed the association of NRXN1 with abnormal behaviors in NDDs and provided richer insights into specific prefrontal knockdown in adolescence, potentially expanding the NRXN1 interactome and contributing to human health.


Assuntos
Transtorno do Espectro Autista , Animais , Ratos , Ansiedade , Transtorno do Espectro Autista/genética , Proteínas de Ligação ao Cálcio/genética , Moléculas de Adesão de Célula Nervosa/genética , Crescimento Neuronal , Fenótipo , Córtex Pré-Frontal , Proteômica
8.
Mol Syndromol ; 13(6): 496-510, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36660026

RESUMO

Introduction: Copy-number variations (CNVs) impacting on small DNA stretches and associated with language deficits provide a unique window to the role played by specific genes in language function. Methods: We report in detail on the cognitive, language, and genetic features of a girl bearing a small deletion (0.186 Mb) in the 2p16.3 region, arr[hg19] 2p16.3(50761778_50947729)×1, affecting exons 3-7 of NRXN1, a neurexin-coding gene previously related to schizophrenia, autism (ASD), attention deficit hyperactivity disorder (ADHD), mood disorder, and intellectual disability (ID). Results: The proband exhibits many of the features commonly found in subjects with deletions of NRXN1, like ASD-like traits (including ritualized behaviors, disordered sensory aspects, social disturbances, and impaired theory of mind), ADHD symptoms, moderate ID, and impaired speech and language. Regarding this latter aspect, we observed altered speech production, underdeveloped phonological awareness, minimal syntax, serious shortage of active vocabulary, impaired receptive language, and inappropriate pragmatic behavior (including lack of metapragmatic awareness and communicative use of gaze). Microarray analyses point to the dysregulation of several genes important for language function in the girl compared to her healthy parents. Discussion: Although some basic cognitive deficit - such as the impairment of executive function - might contribute to the language problems exhibited by the proband, molecular evidence suggests that they might result, to a great extent, from the abnormal expression of genes directly related to language.

9.
Genes (Basel) ; 14(1)2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36672919

RESUMO

The polygenic nature of schizophrenia (SCZ) implicates many variants in disease development. Rare variants of high penetrance have been shown to contribute to the disease prevalence. Whole-exome sequencing of a large three-generation family with SCZ and bipolar disorder identified a single segregating novel, rare, non-synonymous variant in the gene CASKIN1. The variant D1204N is absent from all databases, and CASKIN1 has a gnomAD missense score Z = 1.79 and pLI = 1, indicating its strong intolerance to variation. We find that introducing variants in the proline-rich region where the D1204N resides results in significant cellular changes in iPSC-derived neurons, consistent with CASKIN1's known functions. We observe significant transcriptomic changes in 368 genes (padj < 0.05) involved in neuronal differentiation and nervous system development. We also observed nominally significant changes in the frequency of action potentials during differentiation, where the speed at which the edited and unedited cells reach the same level of activity differs. Our results suggest that CASKIN1 is an excellent gene candidate for psychosis development with high penetrance in this family.


Assuntos
Transtorno Bipolar , Transtornos Psicóticos , Esquizofrenia , Humanos , Predisposição Genética para Doença , Transtornos Psicóticos/genética , Esquizofrenia/genética , Transtorno Bipolar/genética , Prolina/genética , Proteínas do Tecido Nervoso/genética , Proteínas Adaptadoras de Transdução de Sinal/genética
10.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-1024907

RESUMO

Objective To explore the mutation characteristics of neurexin 1(NRXN1)gene in children with Tourette syndrome(TS).Methods A total of 524 children with TS were enrolled.DNA extracted from peripheral blood was sequenced for NRXN1 gene by using target region sequencing which was further verified by using Sanger sequencing.DNAMAN software,SIFT,PolyPhen2,Mutation Taster,FATHMM and ClinPred were used to analyze the hazard of suspected variants.Finally,the genotype and phenotype of the patients with NRXN1 gene variants were analyzed.Results We found 13 variants of the NRXN1 gene in 13 TS patients such as 11 point mutations and 2 deletion mutations including two novel point mutations:c.79G>T(p.A27S)and c.58G>T(p.G20C).The other nine point mutations and two deletion mutations were c.3523A>G(p.I1175V),c.4180A>T(p.T1394S),c.1697A>T(p.H566L),c.3715G>A(p.A1239T),c.878A>C(p.N293T),c.475C>T(p.P159S),c.320C>T(p.T107M),c.365A>G(p.Q122R),c.611T>A(p.L204Q)c.68_79del(p.G23_G26del),c.65_79del(p.G22_G26del).Bioinformatics analysis showed that the six gene variants c.58G>T,c.1697A>T,c.475C>T,c.365A>G,c.878A>C,c.79G>T were relatively harmful.There were 6 children with different parts of the tic,1 child with obsessive-compulsive symptoms,1 child with emotional instability,3 children with irritability,6 children did not have repetitive language,attention deficit,hyperactivity disorder,sleep disorder and depression.Conclusion NRXN1 gene mutation sites are detected in TS children,which expands the NRXN1 mutation spectrum.Children with different gene variants exhibit different clinical manifestations and the relationship between genotype and phenotype need further exploration.

11.
Am J Med Genet A ; 188(12): 3492-3504, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36135330

RESUMO

Esophageal atresia/tracheoesophageal fistula (EA/TEF) is a life-threatening birth defect that often occurs with other major birth defects (EA/TEF+). Despite advances in genetic testing, a molecular diagnosis can only be made in a minority of EA/TEF+ cases. Here, we analyzed clinical exome sequencing data and data from the DECIPHER database to determine the efficacy of exome sequencing in cases of EA/TEF+ and to identify phenotypic expansions involving EA/TEF. Among 67 individuals with EA/TEF+ referred for clinical exome sequencing, a definitive or probable diagnosis was made in 11 cases for an efficacy rate of 16% (11/67). This efficacy rate is significantly lower than that reported for other major birth defects, suggesting that polygenic, multifactorial, epigenetic, and/or environmental factors may play a particularly important role in EA/TEF pathogenesis. Our cohort included individuals with pathogenic or likely pathogenic variants that affect TCF4 and its downstream target NRXN1, and FANCA, FANCB, and FANCC, which are associated with Fanconi anemia. These cases, previously published case reports, and comparisons to other EA/TEF genes made using a machine learning algorithm, provide evidence in support of a potential pathogenic role for these genes in the development of EA/TEF.


Assuntos
Atresia Esofágica , Fístula Traqueoesofágica , Humanos , Fístula Traqueoesofágica/diagnóstico , Fístula Traqueoesofágica/genética , Fístula Traqueoesofágica/complicações , Atresia Esofágica/diagnóstico , Atresia Esofágica/genética , Atresia Esofágica/complicações , Exoma/genética , Sequenciamento do Exoma
12.
Children (Basel) ; 9(5)2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35626875

RESUMO

In the literature, deletions in the 2p16.3 region of the neurexin gene (NRXN1) are associated with cognitive impairment, and other neuropsychiatric disorders, such as schizophrenia, autism, and Pitt-Hopkins-like syndrome 2. In this paper, we present twins with deletion 2p16.3 of the NRXN1 gene using a comparative genomic hybridization array. The two children had a dual diagnosis consisting of mild cognitive impairment and neurodevelopmental delay. Furthermore, they showed a dysmorphic phenotype characterized by facio-cranial disproportion, turricephalus, macrocrania, macrosomia, strabismus, and abnormal conformation of both auricles with low implantation. The genetic analysis of the family members showed the presence, in the father's genetic test, of a microdeletion of the short arm of chromosome 2, in the 2p16.3 region. Our case report can expand the knowledge on the genotype-phenotype association in carriers of 2p16.3 deletion and for genetic counseling that could help in the prevention and eventual treatment of this genetic condition. Newborn carriers should undergo neurobehavioral follow-ups for timely detection of warning signs.

13.
Front Neurosci ; 16: 806990, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35250452

RESUMO

Synaptic gene conditions, i.e., "synaptopathies," involve disruption to genes expressed at the synapse and account for between 0.5 and 2% of autism cases. They provide a unique entry point to understanding the molecular and biological mechanisms underpinning autism-related phenotypes. Phelan-McDermid Syndrome (PMS, also known as 22q13 deletion syndrome) and NRXN1 deletions (NRXN1ds) are two synaptopathies associated with autism and related neurodevelopmental disorders (NDDs). PMS often incorporates disruption to the SHANK3 gene, implicated in excitatory postsynaptic scaffolding, whereas the NRXN1 gene encodes neurexin-1, a presynaptic cell adhesion protein; both are implicated in trans-synaptic signaling in the brain. Around 70% of individuals with PMS and 43-70% of those with NRXN1ds receive a diagnosis of autism, suggesting that alterations in synaptic development may play a crucial role in explaining the aetiology of autism. However, a substantial amount of heterogeneity exists between conditions. Most individuals with PMS have moderate to profound intellectual disability (ID), while those with NRXN1ds have no ID to severe ID. Speech abnormalities are common to both, although appear more severe in PMS. Very little is currently known about the neurocognitive underpinnings of phenotypic presentations in PMS and NRXN1ds. The Synaptic Gene (SynaG) study adopts a gene-first approach and comprehensively assesses these two syndromic forms of autism. The study compliments preclinical efforts within AIMS-2-TRIALS focused on SHANK3 and NRXN1. The aims of the study are to (1) establish the frequency of autism diagnosis and features in individuals with PMS and NRXN1ds, (2) to compare the clinical profile of PMS, NRXN1ds, and individuals with 'idiopathic' autism (iASD), (3) to identify mechanistic biomarkers that may account for autistic features and/or heterogeneity in clinical profiles, and (4) investigate the impact of second or multiple genetic hits on heterogeneity in clinical profiles. In the current paper we describe our methodology for phenotyping the sample and our planned comparisons, with information on the necessary adaptations made during the global COVID-19 pandemic. We also describe the demographics of the data collected thus far, including 25 PMS, 36 NRXN1ds, 33 iASD, and 52 NTD participants, and present an interim analysis of autistic features and adaptive functioning.

14.
Neuropeptides ; 92: 102229, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35158223

RESUMO

The dopaminergic system is a powerful candidate targeted for changes of synaptic plasticity in the hippocampus. Higher incidence of Parkinson's disease (PD) in men than women indicates the influence of sex hormones on the PD development. Previous studies have shown that neurodegenerative diseases such as PD are related to the decline of Allopregnanolon (Allo), a metabolite of progesterone; it is also well known that learning and memory are influenced by oscillations in steroidal hormones. Although abnormalities in hippocampal plasticity have been observed in the toxic models of PD, effects of Allo on hippocampal LTP and hippocampal synaptic protein levels, which play an important role in maintaining the integrity of neural connections, have never been analyzed thus far. Experimental groups subjected to the long-term potentiation (LTP) were studied in the CA1 area of the hippocampus. In addition, the levels of hippocampal postsynaptic density protein 95 (PSD-95), neurexin-1 (Nrxn1) and neuroligin (Nlgn) as synaptic molecular components were determined by immunoblotting. Although dopamine denervation did not alter basal synaptic transmission and pair-pulse facilitation of field excitatory postsynaptic potentials (fEPSPs), the induction and maintenance of LTP were impaired in the CA1 region. In addition, the levels of PSD-95, Nrxn1 and Nlgn were significantly decreased in the hippocampus of 6-OHDA-treated animals. Such abnormalities in synaptic electrophysiological aspects and protein levels were abolished by the treatment with Allo. These findings showed that partial dopamine depletion led to unusual synaptic plasticity in the CA1 as well as the decrease in synaptic proteins in the hippocampus. Our results demonstrated that Allo ameliorated these deficits and preserved pre- and post-synaptic proteins. Therefore, Allo may be an effective factor in maintaining synaptic integrity in the mesolimbic pathway.


Assuntos
Neuroesteroides , Transtornos Parkinsonianos , Animais , Feminino , Hipocampo , Humanos , Potenciação de Longa Duração/fisiologia , Plasticidade Neuronal , Transtornos Parkinsonianos/metabolismo , Pregnanolona/farmacologia , Ratos , Transmissão Sináptica
15.
Brain Imaging Behav ; 16(3): 967-976, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34687402

RESUMO

Impaired sensorimotor circuits have been suggested in Attention-deficit/hyperactivity disorder (ADHD). NRXN1, highly expressed in cortex and cerebellum, was one of the candidate risk genes for ADHD, while its effects on sensorimotor circuits are unclear. In this content, we aimed to investigate the differential brain effects as functions of the cumulative genetic effects of NRXN1 variants in ADHD and healthy controls (HCs), identifying a potential pathway mapping from NRXN1, sensorimotor circuits, to ADHD. Magnetic resonance imaging, blood samples and clinical assessments were acquired from 53 male ADHD and 46 sex-matched HCs simultaneously. The effects of the cumulative genetic effects of NRXN1 variants valued by poly-variant risk score (PRS), on brain function was measured by resting-state functional connectivity (rs-FC) of cerebrocerebellar circuits. Mediation analyses were conducted to evaluate the association between NRXN1, functional abnormality, and ADHD diagnosis, as well as ADHD symptoms. The results were validated by bootstrapping and 10,000 times permutation tests. The rs-FC analyses demonstrated significant mediation models for ADHD diagnosis, and emphasized the involvement of cerebellum, middle cingulate gyrus and temporal gyrus, which are crucial parts of sensorimotor circuits. The current study suggested NRXN1 conferred risk for ADHD by regulating the function of sensorimotor circuits.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Transtorno do Deficit de Atenção com Hiperatividade/diagnóstico por imagem , Transtorno do Deficit de Atenção com Hiperatividade/genética , Encéfalo , Mapeamento Encefálico/métodos , Proteínas de Ligação ao Cálcio , Cerebelo , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Moléculas de Adesão de Célula Nervosa
16.
Brain Imaging Behav ; 16(2): 692-701, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34529206

RESUMO

Certain behavioral characteristics of autism spectrum disorder can be found in otherwise healthy people. Individuals with difficulties in social adaptation may have subclinical autistic traits; however, effective biomarkers of these traits have not yet been established. There is a dire need for objective indices of these traits that combine behavior, brain images, and genetic information. In this study, we examined the association among a single nucleotide polymorphism of NRXN1 (rs858932; C/G), autistic traits, and brain structure in 311 healthy adults. We found that carriers of minor alleles (carriers of the G-allele) had significantly higher systemizing scores than major-allele (C-allele) homozygotes. Furthermore, the regional white matter volume in the right anterior limb of the internal capsule was significantly greater in carriers of the G-allele than in C-allele homozygotes. To the best of our knowledge, this is the first report of NRXN1 rs858932 being involved in systemizing and the brain structure of healthy adults. Our findings provide insight into the effects of genetics on autistic traits and their respective neural substrates.


Assuntos
Transtorno do Espectro Autista , Adulto , Alelos , Transtorno do Espectro Autista/diagnóstico por imagem , Transtorno do Espectro Autista/genética , Encéfalo/diagnóstico por imagem , Proteínas de Ligação ao Cálcio/genética , Humanos , Imageamento por Ressonância Magnética , Moléculas de Adesão de Célula Nervosa/genética , Polimorfismo de Nucleotídeo Único/genética
17.
J Psychiatr Res ; 143: 113-122, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34487988

RESUMO

NRXN1 is involved in synaptogenesis and have been implicated in Autism spectrum disorders. However, many rare inherited missense variants of NRXN1 have not been thoroughly evaluated. Here, functional analyses in vitro and in Drosophila of three NRXN1 missense mutations, Y282H, L893V, and I1135V identified in ASD patients in our previous study were performed. Our results showed these three mutations interfered protein degradation compared with NRXN1-WT protein. Expressing human NRXN1 in Drosophila could lead to abnormal circadian rhythm and sleep behavior, and three mutated proteins caused milder phenotypes, indicating the mutations may change the function of NRXN1 slightly. These findings highlight the functional role of rare NRXN1 missense variants identified in autism patients, and provide clues for us to better understand the pathogenesis of abnormal circadian rhythm and sleep behavior of other organisms, including humans.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Animais , Transtorno do Espectro Autista/genética , Proteínas de Ligação ao Cálcio/genética , Drosophila/genética , Humanos , Mutação de Sentido Incorreto , Moléculas de Adesão de Célula Nervosa/genética , Proteólise , Sono/genética
18.
J Pers Med ; 11(7)2021 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-34357104

RESUMO

Aim: Due to the fact that NRXN1 is associated with neurodevelopmental disorders, the aim of this study was to investigate the role of the NRXN1 gene in the etiology and epigenetics of depression by comparison of NRXN1 mRNA expression and NRXN1 protein level expression in patients suffering from depression versus healthy controls, as well as to search for clinical variables related to expression of the analyzed gene. Material and Methods: A total of 180 people aged 19-64 qualified for the study. The experimental group consisted of 97 people who were psychiatrically hospitalized, diagnosed with recurrent depressive disorders (F33) or who met the diagnostic criteria of a depressive episode (F32) according to ICD-10. The control group included 83 healthy people who volunteered to participate in the study. A sample of peripheral blood was obtained from people who were positively qualified to participate in the study-twice in the experimental group and once in the control group for genetic testing. Sociodemographic variables and data on the course of the disorder were also gathered. Patients were examined on study entry and at the end of the hospitalization with the Hamilton Depression Scale. Obtained data were analyzed statistically. The study was approved by the University's Bioethics Committee. Results: The gene expression of NRXN1 at both mRNA and protein level significantly differs and it is lower in the experimental group compared to expression in healthy people. The difference in gene expression of NRXN1 at both the mRNA and protein levels between the first and second measurement in the experimental group is also significant. The result demonstrates a higher expression level in the first measurement and lower expression level in the second measurement when reported depression symptoms are less severe. Conclusions: Results concerning expression of NRXN1 may play an important role in further researches about the etiopathogenesis of depressive disorders such as looking for depression biomarkers and identifying evidence which may be relevant to personalize treatment for depression.

19.
Exp Neurol ; 344: 113806, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34228999

RESUMO

The learning and memory network is highly complex and remains unclear. The hippocampus is the location of learning and memory function. Impairment of synaptic morphology and synaptic plasticity (i.e., long-term potentiation) appears to cause learning and memory deficits. Several studies have indicated the role of NRXN1 in regulating the synaptic function, but little is known on its role in learning and memory dysfunction associated with attention deficit and hyperactivity disorder (ADHD). Our results showed that overexpression and interference of NRXN1 in vivo, respectively, affected learning and memory, as was assessed by Morris water maze tests, in spontaneously hypertensive rats (SHRs) and Sprague Dawley (SD) rats. We found that SD rats performed better after methylphenidate (MPH) treatment in salvage trials. Accordingly, the change of NRXN1 led to altered synapse-related gene (PSD95, SYN1, GAP43, NLGN1) expression, further providing evidence of its role in the maintenance of synaptic plasticity. We also verified that the expression of synapse-related genes synchronously changed with NRXN1expression in the behavioral assessment. The expression of NRXN1 was confirmed to affect the expression of synapse-related genes after its interference and overexpression in the primary hippocampal neurons in vitro. These results confirmed our hypothesis that NRXN1 might nucleate an overall trans-synaptic signaling network that controls synaptic plasticity and is responsible for impairments in learning and memory in ADHD. These findings suggest a possible protective role of NRXN1 in learning and memory in ADHD. Further RNA-seq sequencing revealed significant differences in the expression of 5-hydroxytryptamine receptor (5-HT6R), which was further verified at the cellular level, and the mechanism of NRXN1 affecting synaptic plasticity was preliminarily discussed.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/metabolismo , Aprendizagem/fisiologia , Memória/fisiologia , Plasticidade Neuronal/fisiologia , Receptores de Superfície Celular/metabolismo , Animais , Modelos Animais de Doenças , Regulação da Expressão Gênica/fisiologia , Hipocampo/metabolismo , Masculino , Neurônios/metabolismo , Ratos , Ratos Endogâmicos SHR , Ratos Sprague-Dawley
20.
Artigo em Inglês | MEDLINE | ID: mdl-34205269

RESUMO

Previous studies have identified variants in genes encoding proteins associated with the degree of addiction, smoking onset, and cessation. We aimed to describe thirty-one single nucleotide polymorphisms (SNPs) in seven candidate genomic regions spanning six genes associated with tobacco-smoking in a cross-sectional study from two different interventions for quitting smoking: (1) thirty-eight smokers were recruited via multimedia to participate in e-Decídete! program (e-Dec) and (2) ninety-four attended an institutional smoking cessation program on-site. SNPs genotyping was done by real-time PCR using TaqMan probes. The analysis of alleles and genotypes was carried out using the EpiInfo v7. on-site subjects had more years smoking and tobacco index than e-Dec smokers (p < 0.05, both); in CYP2A6 we found differences in the rs28399433 (p < 0.01), the e-Dec group had a higher frequency of TT genotype (0.78 vs. 0.35), and TG genotype frequency was higher in the on-site group (0.63 vs. 0.18), same as GG genotype (0.03 vs. 0.02). Moreover, three SNPs in NRXN1, two in CHRNA3, and two in CHRNA5 had differences in genotype frequencies (p < 0.01). Cigarettes per day were different (p < 0.05) in the metabolizer classification by CYP2A6 alleles. In conclusion, subjects attending a mobile smoking cessation intervention smoked fewer cigarettes per day, by fewer years, and by fewer cumulative pack-years. There were differences in the genotype frequencies of SNPs in genes related to nicotine metabolism and nicotine dependence. Slow metabolizers smoked more cigarettes per day than intermediate and normal metabolizers.


Assuntos
Abandono do Hábito de Fumar , Tabagismo , Estudos Transversais , Citocromo P-450 CYP2A6/genética , Genótipo , Humanos , Polimorfismo de Nucleotídeo Único , Fumar/genética , Tabagismo/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA