Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
1.
Fluids Barriers CNS ; 20(1): 79, 2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37924081

RESUMO

BACKGROUND: The monocarboxylate transporter 8 (MCT8) plays a vital role in maintaining brain thyroid hormone homeostasis. This transmembrane transporter is expressed at the brain barriers, as the blood-brain barrier (BBB), and in neural cells, being the sole known thyroid hormone-specific transporter to date. Inactivating mutations in the MCT8 gene (SLC16A2) cause the Allan-Herndon-Dudley Syndrome (AHDS) or MCT8 deficiency, a rare X-linked disease characterized by delayed neurodevelopment and severe psychomotor disorders. The underlying pathophysiological mechanisms of AHDS remain unclear, and no effective treatments are available for the neurological symptoms of the disease. METHODS: Neurovascular unit ultrastructure was studied by means of transmission electron microscopy. BBB permeability and integrity were evaluated by immunohistochemistry, non-permeable dye infiltration assays and histological staining techniques. Brain blood-vessel density was evaluated by immunofluorescence and magnetic resonance angiography. Finally, angiogenic-related factors expression was evaluated by qRT-PCR. The studies were carried out both in an MCT8 deficient subject and Mct8/Dio2KO mice, an AHDS murine model, and their respective controls. RESULTS: Ultrastructural analysis of the BBB of Mct8/Dio2KO mice revealed significant alterations in neurovascular unit integrity and increased transcytotic flux. We also found functional alterations in the BBB permeability, as shown by an increased presence of peripheral IgG, Sodium Fluorescein and Evans Blue, along with increased brain microhemorrhages. We also observed alterations in the angiogenic process, with reduced blood vessel density in adult mice brain and altered expression of angiogenesis-related factors during brain development. Similarly, AHDS human brain samples showed increased BBB permeability to IgG and decreased blood vessel density. CONCLUSIONS: These findings identify for the first time neurovascular alterations in the MCT8-deficient brain, including a disruption of the integrity of the BBB and alterations in the neurovascular unit ultrastructure as a new pathophysiological mechanism for AHDS. These results open a new field for potential therapeutic targets for the neurological symptoms of these patients and unveils magnetic resonance angiography as a new non-invasive in vivo technique for evaluating the progression of the disease.


Assuntos
Deficiência Intelectual Ligada ao Cromossomo X , Simportadores , Animais , Humanos , Camundongos , Barreira Hematoencefálica/metabolismo , Imunoglobulina G , Deficiência Intelectual Ligada ao Cromossomo X/diagnóstico , Deficiência Intelectual Ligada ao Cromossomo X/genética , Deficiência Intelectual Ligada ao Cromossomo X/patologia , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Hipotonia Muscular/diagnóstico , Hipotonia Muscular/genética , Hipotonia Muscular/metabolismo , Atrofia Muscular/diagnóstico , Atrofia Muscular/genética , Atrofia Muscular/metabolismo , Simportadores/genética , Simportadores/metabolismo , Simportadores/uso terapêutico , Hormônios Tireóideos/metabolismo , Hormônios Tireóideos/uso terapêutico
2.
Am J Hum Genet ; 109(3): 518-532, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-35108495

RESUMO

Cell adhesion molecules are membrane-bound proteins predominantly expressed in the central nervous system along principal axonal pathways with key roles in nervous system development, neural cell differentiation and migration, axonal growth and guidance, myelination, and synapse formation. Here, we describe ten affected individuals with bi-allelic variants in the neuronal cell adhesion molecule NRCAM that lead to a neurodevelopmental syndrome of varying severity; the individuals are from eight families. This syndrome is characterized by developmental delay/intellectual disability, hypotonia, peripheral neuropathy, and/or spasticity. Computational analyses of NRCAM variants, many of which cluster in the third fibronectin type III (Fn-III) domain, strongly suggest a deleterious effect on NRCAM structure and function, including possible disruption of its interactions with other proteins. These findings are corroborated by previous in vitro studies of murine Nrcam-deficient cells, revealing abnormal neurite outgrowth, synaptogenesis, and formation of nodes of Ranvier on myelinated axons. Our studies on zebrafish nrcamaΔ mutants lacking the third Fn-III domain revealed that mutant larvae displayed significantly altered swimming behavior compared to wild-type larvae (p < 0.03). Moreover, nrcamaΔ mutants displayed a trend toward increased amounts of α-tubulin fibers in the dorsal telencephalon, demonstrating an alteration in white matter tracts and projections. Taken together, our study provides evidence that NRCAM disruption causes a variable form of a neurodevelopmental disorder and broadens the knowledge on the growing role of the cell adhesion molecule family in the nervous system.


Assuntos
Transtornos do Neurodesenvolvimento , Doenças do Sistema Nervoso Periférico , Animais , Axônios/metabolismo , Adesão Celular/genética , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Moléculas de Adesão Celular Neuronais , Humanos , Camundongos , Hipotonia Muscular/genética , Hipotonia Muscular/metabolismo , Espasticidade Muscular/metabolismo , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
3.
Mol Genet Metab ; 135(1): 109-113, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34969638

RESUMO

BACKGROUND AND OBJECTIVES: MCT8 deficiency is a rare genetic leukoencephalopathy caused by a defect of thyroid hormone transport across cell membranes, particularly through blood brain barrier and into neural cells. It is characterized by a complex neurological presentation, signs of peripheral thyrotoxicosis and cerebral hypothyroidism. Movement disorders (MDs) have been frequently mentioned in this condition, but not systematically studied. METHODS: Each patient recruited was video-recorded during a routine outpatient visit according to a predefined protocol. The presence and the type of MDs were evaluated. The type of MD was blindly scored by two child neurologists experts in inherited white matter diseases and in MD. Dystonia was scored according to Burke-Fahn-Marsden Dystonia Rating Scale (BFMDRS). When more than one MD was present, the predominant one was scored. RESULTS: 27 patients were included through a multicenter collaboration. In many cases we saw a combination of different MDs. Hypokinesia was present in 25/27 patients and was the predominant MD in 19. It was often associated with hypomimia and global hypotonia. Dystonia was observed in 25/27 patients, however, in a minority of cases (5) it was deemed the predominant MD. In eleven patients, exaggerated startle reactions and/or other paroxysmal non-epileptic events were observed. CONCLUSION: MDs are frequent clinical features of MCT8 deficiency, possibly related to the important role of thyroid hormones in brain development and functioning of normal dopaminergic circuits of the basal ganglia. Dystonia is common, but usually mild to moderate in severity, while hypokinesia was the predominant MD in the majority of patients.


Assuntos
Deficiência Intelectual Ligada ao Cromossomo X , Transtornos dos Movimentos , Simportadores , Humanos , Deficiência Intelectual Ligada ao Cromossomo X/genética , Transportadores de Ácidos Monocarboxílicos/genética , Transtornos dos Movimentos/genética , Hipotonia Muscular/complicações , Hipotonia Muscular/genética , Hipotonia Muscular/metabolismo , Atrofia Muscular/complicações , Atrofia Muscular/genética , Atrofia Muscular/metabolismo , Simportadores/genética
4.
J Coll Physicians Surg Pak ; 32(12): SS134-SS136, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36597316

RESUMO

Pompe disease, also known as Glycogen Storage Disease Type II, is a rare disorder of glucose metabolism caused by congenital acid alpha-glucosidase (GAA) deficiency. A large amount of glycogen accumulates in the lysosomes, causing these to swell and rupture. Its incidence is about 1 in 40,000 to 1 in 50,000 newborns. The main features are hypotonia and cardiomyopathy. Only a few clinical cases of Pompe disease have been reported, and appendicular torsion has rarely been observed. Herein, we report a case of Pompe disease combined with appendicular torsion, both of which were diagnosed on autopsy pathology. The clinical diagnosis of this disease is difficult in developing countries, and it is mostly misdiagnosed as other types of heart disease. Once the clinical symptoms worsen, most of them die within a short period. Therefore, screening for neonatal genetic metabolic diseases for early diagnosis and treatment should be carried out. Key Words: Glycogen storage disease type II, Metabolic disease, Enzyme replacement therapy, Neonatal screening.


Assuntos
Cardiomiopatias , Doença de Depósito de Glicogênio Tipo II , Doenças do Recém-Nascido , Humanos , Recém-Nascido , Doença de Depósito de Glicogênio Tipo II/complicações , Doença de Depósito de Glicogênio Tipo II/diagnóstico , Doença de Depósito de Glicogênio Tipo II/genética , alfa-Glucosidases/genética , alfa-Glucosidases/metabolismo , alfa-Glucosidases/uso terapêutico , Hipotonia Muscular/tratamento farmacológico , Hipotonia Muscular/metabolismo , Cardiomiopatias/tratamento farmacológico , Lisossomos/metabolismo , Lisossomos/patologia
5.
Horm Res Paediatr ; 94(3-4): 81-104, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34091447

RESUMO

The current differential diagnosis for a short child with low insulin-like growth factor I (IGF-I) and a normal growth hormone (GH) peak in a GH stimulation test (GHST), after exclusion of acquired causes, includes the following disorders: (1) a decreased spontaneous GH secretion in contrast to a normal stimulated GH peak ("GH neurosecretory dysfunction," GHND) and (2) genetic conditions with a normal GH sensitivity (e.g., pathogenic variants of GH1 or GHSR) and (3) GH insensitivity (GHI). We present a critical appraisal of the concept of GHND and the role of 12- or 24-h GH profiles in the selection of children for GH treatment. The mean 24-h GH concentration in healthy children overlaps with that in those with GH deficiency, indicating that the previously proposed cutoff limit (3.0-3.2 µg/L) is too high. The main advantage of performing a GH profile is that it prevents about 20% of false-positive test results of the GHST, while it also detects a low spontaneous GH secretion in children who would be considered GH sufficient based on a stimulation test. However, due to a considerable burden for patients and the health budget, GH profiles are only used in few centres. Regarding genetic causes, there is good evidence of the existence of Kowarski syndrome (due to GH1 variants) but less on the role of GHSR variants. Several genetic causes of (partial) GHI are known (GHR, STAT5B, STAT3, IGF1, IGFALS defects, and Noonan and 3M syndromes), some responding positively to GH therapy. In the final section, we speculate on hypothetical causes.


Assuntos
Nanismo Hipofisário , Nanismo , Hormônio do Crescimento Humano/metabolismo , Fator de Crescimento Insulin-Like I/deficiência , Hipotonia Muscular , Síndrome de Noonan , Coluna Vertebral/anormalidades , Criança , Pré-Escolar , Diagnóstico Diferencial , Nanismo/diagnóstico , Nanismo/genética , Nanismo/metabolismo , Nanismo Hipofisário/diagnóstico , Nanismo Hipofisário/genética , Nanismo Hipofisário/metabolismo , Hormônio do Crescimento Humano/genética , Humanos , Fator de Crescimento Insulin-Like I/metabolismo , Hipotonia Muscular/diagnóstico , Hipotonia Muscular/genética , Hipotonia Muscular/metabolismo , Síndrome de Noonan/diagnóstico , Síndrome de Noonan/genética , Síndrome de Noonan/metabolismo , Coluna Vertebral/metabolismo
6.
Cell Rep ; 35(2): 108963, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33852835

RESUMO

The assembly pathways of mitochondrial respirasome (supercomplex I+III2+IV) are not fully understood. Here, we show that an early sub-complex I assembly, rather than holo-complex I, is sufficient to initiate mitochondrial respirasome assembly. We find that a distal part of the membrane arm of complex I (PD-a module) is a scaffold for the incorporation of complexes III and IV to form a respirasome subcomplex. Depletion of PD-a, rather than other complex I modules, decreases the steady-state levels of complexes III and IV. Both HEK293T cells lacking TIMMDC1 and patient-derived cells with disease-causing mutations in TIMMDC1 showed accumulation of this respirasome subcomplex. This suggests that TIMMDC1, previously known as a complex-I assembly factor, may function as a respirasome assembly factor. Collectively, we provide a detailed, cooperative assembly model in which most complex-I subunits are added to the respirasome subcomplex in the lateral stages of respirasome assembly.


Assuntos
Complexo III da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/genética , Mitocôndrias/genética , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial/genética , Animais , Linfócitos B , Linhagem Celular Transformada , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/metabolismo , Deficiências do Desenvolvimento/patologia , Complexo I de Transporte de Elétrons/antagonistas & inibidores , Complexo I de Transporte de Elétrons/metabolismo , Complexo III da Cadeia de Transporte de Elétrons/antagonistas & inibidores , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/antagonistas & inibidores , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Embrião não Mamífero , Regulação da Expressão Gênica no Desenvolvimento , Células HEK293 , Humanos , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial/deficiência , Morfolinos/genética , Morfolinos/metabolismo , Hipotonia Muscular/genética , Hipotonia Muscular/metabolismo , Hipotonia Muscular/patologia , Fosforilação Oxidativa , Peixe-Zebra
7.
Thyroid ; 31(6): 985-993, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33307956

RESUMO

Background: The monocarboxylate transporter 8 (Mct8) protein is a primary thyroxine (T4) and triiodothyronine (T3) (thyroid hormone [TH]) transporter. Mutations of the MCT8-encoding, SLC16A2 gene alter thyroid function and TH metabolism and severely impair neurodevelopment (Allan-Herndon-Dudley syndrome [AHDS]). Mct8-deficient mice manifest thyroid alterations but lack neurological signs. It is believed that Mct8 deficiency in mice is compensated by T4 transport through the Slco1c1-encoded organic anion transporter polypeptide 1c1 (Oatp1c1). This allows local brain generation of sufficient T3 by the Dio2-encoded type 2 deiodinase, thus preventing brain hypothyroidism. The Slc16a2/Slco1c1 (MO) and Slc16a2/Dio2 (MD) double knockout (KO) mice lacking T4 and T3 transport, or T3 transport and T4 deiodination, respectively, should be appropriate models of AHDS. Our goal was to compare the cerebral hypothyroidism of systemic hypothyroidism (SH) caused by thyroid gland blockade with that present in the double KO mice. Methods: We performed RNA sequencing by using RNA from the cerebral cortex and striatum of SH mice and the double KO mice on postnatal days 21-23. Real-time polymerase chain reaction was used to confirm RNA-Seq results in replicate biological samples. Cell type involvement was assessed from cell type-enriched genes. Functional genomic differences were analyzed by functional node activity based on a probabilistic graphical model. Results: Each of the three conditions gave a different pattern of gene expression, with partial overlaps. SH gave a wider and highest variation of gene expression than MD or MO. This was partially due to secondary gene responses to hypothyroidism. The set of primary transcriptional T3 targets showed a tighter overlap, but quantitative gene responses indicated that the gene responses in SH were more severe than in MD or MO. Examination of cell type-enriched genes indicated cellular differences between the three conditions. Conclusions: The results indicate that the neurological impairment of AHDS is too severe to be fully explained by TH deprivation only.


Assuntos
Encéfalo/metabolismo , Expressão Gênica , Hipotireoidismo/genética , Iodeto Peroxidase/genética , Deficiência Intelectual Ligada ao Cromossomo X/genética , Transportadores de Ácidos Monocarboxílicos/genética , Hipotonia Muscular/genética , Atrofia Muscular/genética , Proteínas de Transporte de Cátions Orgânicos/genética , Simportadores/genética , Tiroxina/metabolismo , Tri-Iodotironina/metabolismo , Animais , Encéfalo/fisiopatologia , Córtex Cerebral/metabolismo , Perfilação da Expressão Gênica , Hipotireoidismo/metabolismo , Hipotireoidismo/fisiopatologia , Iodeto Peroxidase/metabolismo , Deficiência Intelectual Ligada ao Cromossomo X/metabolismo , Deficiência Intelectual Ligada ao Cromossomo X/fisiopatologia , Camundongos , Camundongos Knockout , Transportadores de Ácidos Monocarboxílicos/metabolismo , Hipotonia Muscular/metabolismo , Hipotonia Muscular/fisiopatologia , Atrofia Muscular/metabolismo , Atrofia Muscular/fisiopatologia , Neostriado/metabolismo , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Simportadores/metabolismo , Iodotironina Desiodinase Tipo II
8.
Hum Mol Genet ; 29(21): 3516-3531, 2021 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-33105479

RESUMO

Neurodevelopmental disorder with microcephaly, hypotonia and variable brain anomalies (NMIHBA) is an autosomal recessive neurodevelopmental and neurodegenerative disorder characterized by global developmental delay and severe intellectual disability. Microcephaly, progressive cortical atrophy, cerebellar hypoplasia and delayed myelination are neurological hallmarks in affected individuals. NMIHBA is caused by biallelic variants in PRUNE1 encoding prune exopolyphosphatase 1. We provide in-depth clinical description of two affected siblings harboring compound heterozygous variant alleles, c.383G > A (p.Arg128Gln), c.520G > T (p.Gly174*) in PRUNE1. To gain insights into disease biology, we biochemically characterized missense variants within the conserved N-terminal aspartic acid-histidine-histidine (DHH) motif and provide evidence that they result in the destabilization of protein structure and/or loss of exopolyphosphatase activity. Genetic ablation of Prune1 results in midgestational lethality in mice, associated with perturbations to embryonic growth and vascular development. Our findings suggest that NMIHBA results from hypomorphic variant alleles in humans and underscore the potential key role of PRUNE1 exopolyphoshatase activity in neurodevelopment.


Assuntos
Hidrolases Anidrido Ácido/deficiência , Deficiência Intelectual/patologia , Microcefalia/patologia , Hipotonia Muscular/patologia , Mutação , Transtornos do Neurodesenvolvimento/patologia , Monoéster Fosfórico Hidrolases/genética , Alelos , Animais , Pré-Escolar , Feminino , Humanos , Lactente , Deficiência Intelectual/etiologia , Deficiência Intelectual/metabolismo , Masculino , Camundongos , Microcefalia/etiologia , Microcefalia/metabolismo , Hipotonia Muscular/etiologia , Hipotonia Muscular/metabolismo , Transtornos do Neurodesenvolvimento/etiologia , Transtornos do Neurodesenvolvimento/metabolismo , Linhagem , Fenótipo
9.
Genes (Basel) ; 11(12)2020 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-33316910

RESUMO

Ring chromosome 8 (r(8)) is one of the least frequent ring chromosomes. Usually, maternal chromosome 8 forms a ring, which can be lost from cells due to mitotic instability. The 8q24 region contains the imprinted KCNK9 gene, which is expressed from the maternal allele. Heterozygous KCNK9 mutations are associated with the imprinting disorder Birk-Barel syndrome. Here, we report a 2.5-year-old boy with developmental delay, microcephaly, dysmorphic features, diffuse muscle hypotonia, feeding problems, motor alalia and noncoarse neurogenic type of disturbance of muscle electrogenesis, partially overlapping with Birk-Barel syndrome phenotype. Cytogenetic analysis of lymphocytes revealed his karyotype to be 46,XY,r(8)(p23q24.3)[27]/45,XY,-8[3]. A de novo 7.9 Mb terminal 8p23.3p23.1 deletion, a 27.1 Mb 8p23.1p11.22 duplication, and a 4.4 Mb intact segment with a normal copy number located between them, as well as a 154-kb maternal LINGO2 gene deletion (9p21.2) with unknown clinical significance were identified by aCGH + SNP array. These aberrations were confirmed by real-time PCR. According to FISH analysis, the 8p23.1-p11.22 duplication was inverted. The ring chromosome originated from maternal chromosome 8. Targeted massive parallel sequencing did not reveal the KCNK9 mutations associated with Birk-Barel syndrome. Our data allow to assume that autosomal monosomy with inactive allele of imprinted gene arising from the loss of a ring chromosome in some somatic cells may be an etiological mechanism of mosaic imprinting disorders, presumably with less severe phenotype.


Assuntos
Anormalidades Craniofaciais/genética , Deficiência Intelectual/genética , Hipotonia Muscular/genética , Pré-Escolar , Deleção Cromossômica , Cromossomos Humanos Par 8/genética , Cromossomos Humanos Par 8/metabolismo , Anormalidades Craniofaciais/metabolismo , Impressão Genômica/genética , Humanos , Deficiência Intelectual/metabolismo , Cariótipo , Cariotipagem/métodos , Masculino , Proteínas de Membrana/genética , Mosaicismo , Hipotonia Muscular/metabolismo , Mutação/genética , Proteínas do Tecido Nervoso/genética , Fenótipo , Canais de Potássio de Domínios Poros em Tandem/genética , Cromossomos em Anel
10.
Mol Med Rep ; 22(5): 3895-3903, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33000225

RESUMO

Potassium­channel tetramerization-domain-containing 1 (KCTD1) mutations are reported to result in scalp­ear­nipple syndrome. These mutations occur in the conserved broad­complex, tramtrack and bric a brac domain, which is associated with inhibited transcriptional activity. However, the mechanisms of KCTD1 mutants have not previously been elucidated; thus, the present study aimed to investigate whether KCTD1 mutants affect their interaction with transcription factor AP­2α and their regulation of the Wnt pathway. Results from the present study demonstrated that none of the ten KCTD1 mutants had an inhibitory effect on the transcriptional activity of AP­2α. Co­immunoprecipitation assays demonstrated that certain mutants exhibited changeable localization compared with the nuclear localization of wild­type KCTD1, but no KCTD1 mutant interacted with AP­2α. Almost all KCTD1 mutants, except KCTD1 A30E and H33Q, exhibited differential inhibitory effects on regulating TOPFLASH luciferase reporter activity. In addition, the interaction region of KCTD1 to the PY motif (amino acids 59­62) in AP­2α was identified. KCTD1 exhibited no suppressive effects on the transcriptional activity of the AP­2α P59A mutant, resulting in Char syndrome, a genetic disorder characterized by a distinctive facial appearance, heart defect and hand abnormalities, by altered protein cellular localization that abolished protein interactions. However, the P59A, P60A, P61R and 4A AP­2α mutants inhibited TOPFLASH reporter activity. Moreover, AP­2α and KCTD1 inhibited ß­catenin expression levels and SW480 cell viability. The present study thus identified a putative mechanism of disease­related KCTD1 mutants and AP­2α mutants by disrupting their interaction with the wildtype proteins AP­2α and KCTD1 and influencing the regulation of the Wnt/ß­catenin pathway.


Assuntos
Anormalidades Múltiplas/metabolismo , Proteínas Correpressoras/metabolismo , Permeabilidade do Canal Arterial/metabolismo , Orelha Externa/anormalidades , Face/anormalidades , Dedos/anormalidades , Hipospadia/metabolismo , Hipotonia Muscular/metabolismo , Proteínas Mutantes/metabolismo , Mamilos/anormalidades , Couro Cabeludo/anormalidades , Fator de Transcrição AP-2/metabolismo , Via de Sinalização Wnt/genética , beta Catenina/metabolismo , Anormalidades Múltiplas/genética , Sobrevivência Celular/genética , Proteínas Correpressoras/genética , Permeabilidade do Canal Arterial/genética , Orelha Externa/metabolismo , Células HEK293 , Células HeLa , Humanos , Hipospadia/genética , Imunoprecipitação , Hipotonia Muscular/genética , Mutação , Mamilos/metabolismo , Fenótipo , Ligação Proteica , Couro Cabeludo/metabolismo , Fator de Transcrição AP-2/genética , Transfecção
11.
Invest Ophthalmol Vis Sci ; 61(11): 18, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32915983

RESUMO

Purpose: Cohen syndrome (CS) is a rare genetic disorder caused by variants of the VPS13B gene. CS patients are affected with a severe form of retinal dystrophy, and in several cases cataracts also develop. The purpose of this study was to investigate the mechanisms and risk factors for cataract in CS, as well as to report on cataract surgeries in CS patients. Methods: To understand how VPS13B is associated with visual impairments in CS, we generated the Vps13b∆Ex3/∆Ex3 mouse model. Mice from 1 to 3 months of age were followed by ophthalmoscopy and slit-lamp examinations. Phenotypes were investigated by histology, immunohistochemistry, and western blot. Literature analysis was performed to determine specific characteristic features of cataract in CS and to identify potential genotype-phenotype correlations. Results: Cataracts rapidly developed in 2-month-old knockout mice and were present in almost all lenses at 3 months. Eye fundi appeared normal until cataract development. Lens immunostaining revealed that cataract formation was associated with the appearance of large vacuoles in the cortical area, epithelial-mesenchymal transition, and fibrosis. In later stages, cataracts became hypermature, leading to profound retinal remodeling due to inflammatory events. Literature analysis showed that CS-related cataracts display specific features compared to other forms of retinitis pigmentosa-related cataracts, and their onset is modified by additional genetic factors. Corroboratively, we were able to isolate a subline of the Vps13b∆Ex3/∆Ex3 model with delayed cataract onset. Conclusions: VPS13B participates in lens homeostasis, and the CS-related cataract development dynamic is linked to additional genetic factors.


Assuntos
Catarata/genética , Dedos/anormalidades , Regulação da Expressão Gênica , Homeostase/genética , Deficiência Intelectual/complicações , Cristalino/metabolismo , Microcefalia/complicações , Hipotonia Muscular/complicações , Miopia/complicações , Obesidade/complicações , RNA/genética , Degeneração Retiniana/complicações , Proteínas de Transporte Vesicular/genética , Animais , Western Blotting , Catarata/etiologia , Catarata/metabolismo , Deficiências do Desenvolvimento/complicações , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/metabolismo , Modelos Animais de Doenças , Deficiência Intelectual/genética , Deficiência Intelectual/metabolismo , Cristalino/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microcefalia/genética , Microcefalia/metabolismo , Hipotonia Muscular/genética , Hipotonia Muscular/metabolismo , Miopia/genética , Miopia/metabolismo , Obesidade/genética , Obesidade/metabolismo , Degeneração Retiniana/genética , Degeneração Retiniana/metabolismo , Proteínas de Transporte Vesicular/biossíntese
12.
Mol Brain ; 13(1): 69, 2020 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-32375900

RESUMO

Significant clinical symptoms of Cohen syndrome (CS), a rare autosomal recessive disorder, include intellectual disability, facial dysmorphism, postnatal microcephaly, retinal dystrophy, and intermittent neutropenia. CS has been associated with mutations in the VPS13B (vacuolar protein sorting 13 homolog B) gene, which regulates vesicle-mediated protein sorting and transport; however, the cellular mechanism underlying CS pathogenesis in patient-derived neurons remains uncertain. This report states that autophagic vacuoles accumulate in CS fibroblasts and the axonal terminals of CS patient-specific induced pluripotent stem cells (CS iPSC)-derived neurons; additionally, autophagic flux was significantly increased in CS-derived neurons compared to control neurons. VPS13B knockout HeLa cell lines generated using the CRISPR/Cas9 genome editing system showed significant upregulation of autophagic flux, indicating that VSP13B may be associated with autophagy in CS. Transcriptomic analysis focusing on the autophagy pathway revealed that genes associated with autophagosome organization were dysregulated in CS-derived neurons. ATG4C is a mammalian ATG4 paralog and a crucial regulatory component of the autophagosome biogenesis/recycling pathway. ATG4C was significantly upregulated in CS-derived neurons, indicating that autophagy is upregulated in CS neurons. The autophagy pathway in CS neurons may be associated with the pathophysiology exhibited in the neural network of CS patients.


Assuntos
Autofagossomos/metabolismo , Autofagia/genética , Fibroblastos/metabolismo , Dedos/anormalidades , Células-Tronco Pluripotentes Induzidas/metabolismo , Deficiência Intelectual/metabolismo , Microcefalia/metabolismo , Hipotonia Muscular/metabolismo , Miopia/metabolismo , Neurônios/metabolismo , Obesidade/metabolismo , Degeneração Retiniana/metabolismo , Proteínas de Transporte Vesicular/genética , Autofagossomos/genética , Autofagossomos/ultraestrutura , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Axônios/metabolismo , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Deficiências do Desenvolvimento/metabolismo , Deficiências do Desenvolvimento/fisiopatologia , Fibroblastos/patologia , Fibroblastos/ultraestrutura , Dedos/fisiopatologia , Técnicas de Inativação de Genes , Células HeLa , Humanos , Células-Tronco Pluripotentes Induzidas/patologia , Deficiência Intelectual/fisiopatologia , Microcefalia/fisiopatologia , Microscopia Eletrônica , Hipotonia Muscular/fisiopatologia , Mutação de Sentido Incorreto , Miopia/fisiopatologia , Rede Nervosa/fisiologia , Neurônios/patologia , Obesidade/fisiopatologia , Degeneração Retiniana/fisiopatologia , Regulação para Cima , Vacúolos/metabolismo
13.
Exp Clin Endocrinol Diabetes ; 128(6-07): 414-422, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32242326

RESUMO

Despite its first description more than 75 years ago, effective treatment for "Allan-Herndon-Dudley-Syndrome (AHDS)", an X-linked thyroid hormone transporter defect, is unavailable. Mutations in the SLC16A2 gene have been discovered to be causative for AHDS in 2004, but a comprehensive understanding of the function of the encoded protein, monocarboxylate transporter 8 (MCT8), is incomplete. Patients with AHDS suffer from neurodevelopmental delay, as well as extrapyramidal (dystonia, chorea, athetosis), pyramidal (spasticity), and cerebellar symptoms (ataxia). This suggests an affection of the pyramidal tracts, basal ganglia, and cerebellum, most likely already during fetal brain development. The function of other brain areas relevant for mood, behavior, and vigilance seems to be intact. An optimal treatment strategy should thus aim to deliver T3 to these relevant structures at the correct time points during development. A potential therapeutic strategy meeting these needs might be the delivery of T3 via a "Trojan horse mechanism" by which T3 is delivered into target cells by a thyroid hormone transporter independent T3 internalization.


Assuntos
Gânglios da Base , Cerebelo , Deficiência Intelectual Ligada ao Cromossomo X/tratamento farmacológico , Deficiência Intelectual Ligada ao Cromossomo X/metabolismo , Deficiência Intelectual Ligada ao Cromossomo X/fisiopatologia , Transportadores de Ácidos Monocarboxílicos/metabolismo , Hipotonia Muscular/tratamento farmacológico , Hipotonia Muscular/metabolismo , Hipotonia Muscular/fisiopatologia , Atrofia Muscular/tratamento farmacológico , Atrofia Muscular/metabolismo , Atrofia Muscular/fisiopatologia , Tratos Piramidais , Tri-Iodotironina/administração & dosagem , Tri-Iodotironina/metabolismo , Gânglios da Base/efeitos dos fármacos , Gânglios da Base/fisiopatologia , Cerebelo/efeitos dos fármacos , Cerebelo/fisiopatologia , Humanos , Tratos Piramidais/efeitos dos fármacos , Tratos Piramidais/fisiopatologia
14.
Thyroid ; 30(9): 1366-1383, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32143555

RESUMO

Background: Mutations of monocarboxylate transporter 8 (MCT8), a thyroid hormone (TH)-specific transmembrane transporter, cause a severe neurodevelopmental disorder, the Allan-Herndon-Dudley syndrome. In MCT8 deficiency, TH is not able to reach those areas of the brain where TH uptake depends on MCT8. Currently, therapeutic options for MCT8-deficient patients are missing, as TH treatment is not successful in improving neurological deficits. Available data on MCT8 protein and transcript levels indicate complex expression patterns in neural tissue depending on species, brain region, sex, and age. However, information on human MCT8 expression is still scattered and additional efforts are needed to map sites of MCT8 expression in neurovascular units and neural tissue. This is of importance because new therapeutic strategies for this disease are urgently needed. Methods: To identify regions and time windows of MCT8 expression, we used highly specific antibodies against MCT8 to perform immunofluorescence labeling of postnatal murine brains, adult human brain tissue, and human cerebral organoids. Results: Qualitative and quantitative analyses of murine brain samples revealed stable levels of MCT8 protein expression in endothelial cells of the blood-brain barrier (BBB), choroid plexus epithelial cells, and tanycytes during postnatal development. Conversely, the neuronal MCT8 protein expression that was robustly detectable in specific brain regions of young mice strongly declined with age. Similarly, MCT8 immunoreactivity in adult human brain tissue was largely confined to endothelial cells of the BBB. Recently, cerebral organoids emerged as promising models of human neural development and our first analyses of forebrain-like organoids revealed MCT8 expression in early neuronal progenitor cell populations. Conclusions: With respect to MCT8-deficient conditions, our analyses not only strongly support the contention that the BBB presents a lifelong barrier to TH uptake but also highlight the need to decipher the TH transport role of MCT8 in early neuronal cell populations in more detail. Improving the understanding of the spatiotemporal expression in latter barriers will be critical for therapeutic strategies addressing MCT8 deficiency in the future.


Assuntos
Regulação da Expressão Gênica , Transportadores de Ácidos Monocarboxílicos/biossíntese , Mutação , Simportadores/biossíntese , Idoso , Idoso de 80 Anos ou mais , Animais , Encéfalo/metabolismo , Linhagem Celular , Cães , Células Endoteliais/metabolismo , Perfilação da Expressão Gênica , Humanos , Deficiência Intelectual Ligada ao Cromossomo X/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Hipotonia Muscular/metabolismo , Atrofia Muscular/metabolismo , Neurogênese , Neurônios/metabolismo , Prosencéfalo/metabolismo , Tri-Iodotironina/metabolismo
15.
Thyroid ; 30(8): 1205-1216, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32188347

RESUMO

Background: Tachycardia, cardiac hypertrophy, and elevated body temperature are major signs of systemic hyperthyroidism, which are considered to reflect the excessive thyroid hormone (TH) action in the respective peripheral tissues. However, recent observations indicate that the central actions of TH also contribute substantially to cardiovascular regulation and thermogenesis. Methods: In this study, we dissect the individual contributions of peripheral TH action versus the central effects in body temperature regulation and cardiovascular functions by taking advantage of mice lacking the TH transporters monocarboxylate transporter 8 (MCT8) and organic anion transporting polypeptide 1C1 (OATP1C1) (M/O double knock-out [dko]), which exhibit elevated serum triiodothyronine (T3) levels while their brain is in a profoundly hypothyroid state. We compared these animals with wild-type (WT) mice that were treated orally with T3 to achieve similarly elevated serum T3 levels, but are centrally hyperthyroid. For the studies, we used radiotelemetry, infrared thermography, gene expression profiling, Western blot analyses, and enzyme linked immunosorbent assays (ELISA) assays. Results: Our analyses revealed mild hyperthermia and cardiac hypertrophy in T3-treated WT mice but not in M/O dko animals, suggesting that central actions of TH are required for these hyperthyroid phenotypes. Although the average heart rate was unaffected in either model, the M/O dko exhibited an altered heart rate frequency distribution with tachycardic bursts in active periods and bradycardic episodes during resting time, demonstrating that the stabilization of heart rate by the autonomic nervous system can be impaired in centrally hypothyroid animals. Conclusions: Our studies unravel distinct phenotypical traits of hyperthyroidism that depend on an intact central nervous system, and provide valuable insight into the cardiovascular pathology of the Allan-Herndon-Dudley syndrome, a condition caused by the lack of MCT8 in humans.


Assuntos
Cardiomegalia/metabolismo , Febre/metabolismo , Frequência Cardíaca , Hipotireoidismo/complicações , Hormônios Tireóideos/metabolismo , Animais , Cardiomegalia/prevenção & controle , Cruzamentos Genéticos , Ensaio de Imunoadsorção Enzimática , Perfilação da Expressão Gênica , Glicogênio/metabolismo , Lipólise , Fígado/metabolismo , Masculino , Deficiência Intelectual Ligada ao Cromossomo X/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transportadores de Ácidos Monocarboxílicos/genética , Hipotonia Muscular/metabolismo , Atrofia Muscular/metabolismo , Fenótipo , Telemetria , Termogênese , Termografia , Fatores de Tempo , Tri-Iodotironina/sangue
16.
Am J Hum Genet ; 106(2): 272-279, 2020 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-32004445

RESUMO

Recent studies have identified both recessive and dominant forms of mitochondrial disease that result from ATAD3A variants. The recessive form includes subjects with biallelic deletions mediated by non-allelic homologous recombination. We report five unrelated neonates with a lethal metabolic disorder characterized by cardiomyopathy, corneal opacities, encephalopathy, hypotonia, and seizures in whom a monoallelic reciprocal duplication at the ATAD3 locus was identified. Analysis of the breakpoint junction fragment indicated that these 67 kb heterozygous duplications were likely mediated by non-allelic homologous recombination at regions of high sequence identity in ATAD3A exon 11 and ATAD3C exon 7. At the recombinant junction, the duplication allele produces a fusion gene derived from ATAD3A and ATAD3C, the protein product of which lacks key functional residues. Analysis of fibroblasts derived from two affected individuals shows that the fusion gene product is expressed and stable. These cells display perturbed cholesterol and mitochondrial DNA organization similar to that observed for individuals with severe ATAD3A deficiency. We hypothesize that the fusion protein acts through a dominant-negative mechanism to cause this fatal mitochondrial disorder. Our data delineate a molecular diagnosis for this disorder, extend the clinical spectrum associated with structural variation at the ATAD3 locus, and identify a third mutational mechanism for ATAD3 gene cluster variants. These results further affirm structural variant mutagenesis mechanisms in sporadic disease traits, emphasize the importance of copy number analysis in molecular genomic diagnosis, and highlight some of the challenges of detecting and interpreting clinically relevant rare gene rearrangements from next-generation sequencing data.


Assuntos
ATPases Associadas a Diversas Atividades Celulares/genética , Colesterol/metabolismo , Duplicação Gênica , Recombinação Homóloga , Proteínas de Membrana/genética , Mitocôndrias/patologia , Doenças Mitocondriais/patologia , Proteínas Mitocondriais/genética , ATPases Associadas a Diversas Atividades Celulares/química , Sequência de Aminoácidos , Encefalopatias/etiologia , Encefalopatias/metabolismo , Encefalopatias/patologia , Cardiomiopatias/etiologia , Cardiomiopatias/metabolismo , Cardiomiopatias/patologia , Opacidade da Córnea/etiologia , Opacidade da Córnea/metabolismo , Opacidade da Córnea/patologia , Variações do Número de Cópias de DNA , Feminino , Rearranjo Gênico , Humanos , Lactente , Recém-Nascido , Masculino , Proteínas de Membrana/química , Mitocôndrias/genética , Mitocôndrias/metabolismo , Doenças Mitocondriais/genética , Doenças Mitocondriais/metabolismo , Proteínas Mitocondriais/química , Hipotonia Muscular/etiologia , Hipotonia Muscular/metabolismo , Hipotonia Muscular/patologia , Mutação , Conformação Proteica , Convulsões/etiologia , Convulsões/metabolismo , Convulsões/patologia , Homologia de Sequência
17.
Nat Commun ; 11(1): 480, 2020 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-31980599

RESUMO

Mutations in the actively expressed, maternal allele of the imprinted KCNK9 gene cause Birk-Barel intellectual disability syndrome (BBIDS). Using a BBIDS mouse model, we identify here a partial rescue of the BBIDS-like behavioral and neuronal phenotypes mediated via residual expression from the paternal Kcnk9 (Kcnk9pat) allele. We further demonstrate that the second-generation HDAC inhibitor CI-994 induces enhanced expression from the paternally silenced Kcnk9 allele and leads to a full rescue of the behavioral phenotype suggesting CI-994 as a promising molecule for BBIDS therapy. Thus, these findings suggest a potential approach to improve cognitive dysfunction in a mouse model of an imprinting disorder.


Assuntos
Anormalidades Craniofaciais/genética , Anormalidades Craniofaciais/metabolismo , Histonas/metabolismo , Deficiência Intelectual/genética , Deficiência Intelectual/metabolismo , Hipotonia Muscular/genética , Hipotonia Muscular/metabolismo , Canais de Potássio/genética , Animais , Comportamento Animal , Benzamidas , Encéfalo/metabolismo , Anormalidades Craniofaciais/tratamento farmacológico , Modelos Animais de Doenças , Feminino , Técnicas de Silenciamento de Genes , Impressão Genômica , Inibidores de Histona Desacetilases/farmacologia , Humanos , Deficiência Intelectual/tratamento farmacológico , Locus Cerúleo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Hipotonia Muscular/tratamento farmacológico , Mutação , Fenótipo , Fenilenodiaminas/farmacologia , Canais de Potássio/deficiência , Canais de Potássio/metabolismo , Regulação para Cima/efeitos dos fármacos
18.
Endocr Rev ; 41(2)2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31754699

RESUMO

Thyroid hormone transporters at the plasma membrane govern intracellular bioavailability of thyroid hormone. Monocarboxylate transporter (MCT) 8 and MCT10, organic anion transporting polypeptide (OATP) 1C1, and SLC17A4 are currently known as transporters displaying the highest specificity toward thyroid hormones. Structure-function studies using homology modeling and mutational screens have led to better understanding of the molecular basis of thyroid hormone transport. Mutations in MCT8 and in OATP1C1 have been associated with clinical disorders. Different animal models have provided insight into the functional role of thyroid hormone transporters, in particular MCT8. Different treatment strategies for MCT8 deficiency have been explored, of which thyroid hormone analogue therapy is currently applied in patients. Future studies may reveal the identity of as-yet-undiscovered thyroid hormone transporters. Complementary studies employing animal and human models will provide further insight into the role of transporters in health and disease. (Endocrine Reviews 41: 1 - 55, 2020).


Assuntos
Transporte Biológico/fisiologia , Proteínas de Membrana Transportadoras/fisiologia , Deficiência Intelectual Ligada ao Cromossomo X , Transportadores de Ácidos Monocarboxílicos/fisiologia , Hipotonia Muscular , Atrofia Muscular , Transportadores de Ânions Orgânicos/fisiologia , Simportadores/fisiologia , Hormônios Tireóideos/metabolismo , Animais , Humanos , Proteínas de Membrana Transportadoras/deficiência , Proteínas de Membrana Transportadoras/genética , Deficiência Intelectual Ligada ao Cromossomo X/genética , Deficiência Intelectual Ligada ao Cromossomo X/metabolismo , Deficiência Intelectual Ligada ao Cromossomo X/fisiopatologia , Deficiência Intelectual Ligada ao Cromossomo X/terapia , Transportadores de Ácidos Monocarboxílicos/deficiência , Transportadores de Ácidos Monocarboxílicos/genética , Hipotonia Muscular/genética , Hipotonia Muscular/metabolismo , Hipotonia Muscular/fisiopatologia , Hipotonia Muscular/terapia , Atrofia Muscular/genética , Atrofia Muscular/metabolismo , Atrofia Muscular/fisiopatologia , Atrofia Muscular/terapia , Transportadores de Ânions Orgânicos/deficiência , Transportadores de Ânions Orgânicos/genética , Simportadores/deficiência , Simportadores/genética , Hormônios Tireóideos/uso terapêutico
19.
Exp Clin Endocrinol Diabetes ; 128(6-07): 423-427, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31724131

RESUMO

Thyroid hormone (TH) transporters are required for cellular transmembrane passage of TH and are thus mandatory for proper TH metabolism and action. Consequently, inactivating mutations in TH transporters such as MCT8 or OATP1C1 can cause tissue- specific changes in TH homeostasis. As the most prominent example, patients with MCT8 mutations exhibit elevated serum T3 levels, whereas their CNS appear to be in a TH deficient state. Here, we will briefly summarize recent studies of mice lacking Mct8 alone or in combination with the TH transporters Mct10 or Oatp1c1 that shed light on many aspects and pathogenic events underlying global MCT8 deficiency and also underscore the contribution of Mct10 and Oatp1c1 in tissue-specific TH transport processes. Moreover, development of conditional knock-out mice that allow a cell-specific inactivation of TH transporters in distinct tissues, disclosed cell-specific changes in TH signaling, thereby highlighting the pathophysiological significance of local control of TH action.


Assuntos
Deficiência Intelectual Ligada ao Cromossomo X/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Hipotonia Muscular/metabolismo , Atrofia Muscular/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Tiroxina/metabolismo , Tri-Iodotironina/metabolismo , Animais , Humanos
20.
FASEB J ; 33(11): 12336-12347, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31451050

RESUMO

Reactive oxygen species (ROS) can act as second messengers in various signaling pathways, and abnormal oxidation contributes to multiple diseases, including cancer. Detecting and quantifying protein oxidation is crucial for a detailed understanding of reduction-oxidation reaction (redox) signaling. We developed an Activated Thiol Sepharose-based proteomic (ATSP) approach to quantify reversible protein oxidation. ATSP can enrich H2O2-sensitive thiol peptides, which are more likely to contain reactive cysteines involved in redox signaling. We applied our approach to analyze hereditary leiomyomatosis and renal cell carcinoma (HLRCC), a type of kidney cancer that harbors fumarate hydratase (FH)-inactivating mutations and has elevated ROS levels. Multiple proteins were oxidized in FH-deficient cells, including many metabolic proteins such as the pyruvate kinase M2 isoform (PKM2). Treatment of HLRCC cells with dimethyl fumarate or PKM2 activators altered PKM2 oxidation levels. Finally, we found that ATSP could detect Src homology region 2 domain-containing phosphatase-2 and PKM2 oxidation in cells stimulated with platelet-derived growth factor. This newly developed redox proteomics workflow can detect reversible oxidation of reactive cysteines and can be employed to analyze multiple physiologic and pathologic conditions.-Xu, Y., Andrade, J., Ueberheide, B., Neel, B. G. Activated Thiol Sepharose-based proteomic approach to quantify reversible protein oxidation.


Assuntos
Proteínas/metabolismo , Proteômica/métodos , Sefarose/análogos & derivados , Animais , Proteínas de Transporte/metabolismo , Células Cultivadas , Cisteína/metabolismo , Fumarato de Dimetilo/farmacologia , Fumarato Hidratase/deficiência , Fumarato Hidratase/metabolismo , Proteínas de Membrana/metabolismo , Erros Inatos do Metabolismo/metabolismo , Hipotonia Muscular/metabolismo , Oxirredução , Transtornos Psicomotores/metabolismo , Ratos , Sefarose/química , Hormônios Tireóideos/metabolismo , Proteínas de Ligação a Hormônio da Tireoide
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...