Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Biochem Biophys Res Commun ; 709: 149839, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38564943

RESUMO

Single-domain VHH antibody is regarded as one of the promising antibody classes for therapeutic and diagnostic applications. VHH antibodies have amino acids in framework region 2 that are distinct from those in conventional antibodies, such as the Val37Phe/Tyr (V37F/Y) substitution. Correlations between the residue type at position 37 and the conformation of the CDR3 in VHH antigen recognition have been previously reported. However, few studies focused on the meaning of harboring two residue types in position 37 of VHH antibodies, and the concrete roles of Y37 have been little to be elucidated. Here, we investigated the functional states of position 37 in co-crystal structures and performed analyses of three model antibodies with either F or Y at position 37. Our analysis indicates that Y at position 37 enhances the dissociation rate, which is highly correlated with drug efficacy. Our findings help to explain the molecular mechanisms that distinguish VHH antibodies from conventional antibodies.


Assuntos
Antígenos de Grupos Sanguíneos , Camelídeos Americanos , Anticorpos de Domínio Único , Animais , Anticorpos de Domínio Único/química , Sequência de Aminoácidos , Anticorpos
2.
J Virol ; 96(11): e0007122, 2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35575481

RESUMO

Zika virus (ZIKV) is a global public health concern due to its ability to cause congenital Zika syndrome and lack of approved vaccine, therapeutic, or other control measures. We discovered eight novel rabbit monoclonal antibodies (MAbs) that bind to distinct ZIKV envelope protein epitopes. The majority of the MAbs were ZIKV specific and targeted the lateral ridge of the envelope (E) protein domain III, while the MAb with the highest neutralizing activity recognized a putative quaternary epitope spanning E protein domains I and III. One of the non-neutralizing MAbs specifically recognized ZIKV precursor membrane protein (prM). Somatic hypermutation of immunoglobulin variable regions increases antibody affinity maturation and triggers antibody class switching. Negative correlations were observed between the somatic hypermutation rate of the immunoglobulin heavy-chain variable region and antibody binding parameters such as equilibrium dissociation constant, dissociation constant, and half-maximal effective concentration value of MAb binding to ZIKV virus-like particles. Complementarity-determining regions recognize the antigen epitopes and are scaffolded by canonical framework regions. Reversion of framework region amino acids to the rabbit germ line sequence decreased anti-ZIKV MAb binding activity of some MAbs. Thus, antibody affinity maturation, including somatic hypermutation and framework region mutations, contributed to the binding and function of these anti-ZIKV MAbs. IMPORTANCE ZIKV is a global health concern against which no vaccine or therapeutics are available. We characterized eight novel rabbit monoclonal antibodies recognizing ZIKV envelope and prM proteins and studied the relationship between somatic hypermutation of complementarity-determining regions, framework regions, mutations, antibody specificity, binding, and neutralizing activity. The results contribute to understanding structural features and somatic mutation pathways by which potent Zika virus-neutralizing antibodies can evolve, including the role of antibody framework regions.


Assuntos
Anticorpos Monoclonais , Anticorpos Antivirais , Hipermutação Somática de Imunoglobulina , Zika virus , Animais , Anticorpos Monoclonais/genética , Anticorpos Neutralizantes/genética , Anticorpos Antivirais/genética , Regiões Determinantes de Complementaridade/genética , Epitopos/genética , Mutação , Coelhos , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/imunologia , Zika virus/imunologia
3.
Biol Pharm Bull ; 46(12): 1661-1665, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38044090

RESUMO

We generated three single-chain Fv fragments (scFvs) specific to cortisol according to our original affinity-maturation strategy and verified their utility in developing immunoassays. These scFv mutants (m-scFvs) had insertion of one, four, or six amino acid(s) in the framework region 1 of the VH-domain and showed >55-fold higher affinity (Ka, 2.0 - 2.2 × 1010 M-1) than the unmodified scFv (wt-scFv). Each m-scFv was fused with NanoLuc luciferase (NLuc) for the use in enzyme-linked immunosorbent assays (ELISAs). In these ELISA, the m-scFv-NLuc fusions were competitively reacted with immobilized cortisol residues and cortisol standards, and then the bound NLuc activity was monitored luminometrically. The luminescent ELISAs generated dose-response curves with extremely low midpoints (approx. 3 pg/assay) and were >150-fold more sensitive than the colorimetric ELISAs using wt-scFv and >8000-fold more sensitive than the ELISA using the parental native antibody. The luminescent ELISAs showed acceptable cross-reactivity patterns with related steroids, and the determination of control sera afforded cortisol levels in the reference range with satisfactory parallelism.


Assuntos
Hidrocortisona , Anticorpos de Cadeia Única , Hidrocortisona/análise , Aminoácidos , Anticorpos de Cadeia Única/genética , Ensaio de Imunoadsorção Enzimática , Reações Cruzadas , Fragmentos de Imunoglobulinas/química , Afinidade de Anticorpos
4.
Subcell Biochem ; 94: 465-497, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32189312

RESUMO

In vertebrates, immunoglobulins (Igs), commonly known as antibodies, play an integral role in the armamentarium of immune defense against various pathogens. After an antigenic challenge, antibodies are secreted by differentiated B cells called plasma cells. Antibodies have two predominant roles that involve specific binding to antigens to launch an immune response, along with activation of other components of the immune system to fight pathogens. The ability of immunoglobulins to fight against innumerable and diverse pathogens lies in their intrinsic ability to discriminate between different antigens. Due to this specificity and high affinity for their antigens, antibodies have been a valuable and indispensable tool in research, diagnostics and therapy. Although seemingly a simple maneuver, the association between an antibody and its antigen, to make an antigen-antibody complex, is comprised of myriads of non-covalent interactions. Amino acid residues on the antigen binding site, the epitope, and on the antibody binding site, the paratope, intimately contribute to the energetics needed for the antigen-antibody complex stability. Structural biology methods to study antigen-antibody complexes are extremely valuable tools to visualize antigen-antibody interactions in detail; this helps to elucidate the basis of molecular recognition between an antibody and its specific antigen. The main scope of this chapter is to discuss the structure and function of different classes of antibodies and the various aspects of antigen-antibody interactions including antigen-antibody interfaces-with a special focus on paratopes, complementarity determining regions (CDRs) and other non-CDR residues important for antigen binding and recognition. Herein, we also discuss methods used to study antigen-antibody complexes, antigen recognition by antibodies, types of antigens in complexes, and how antigen-antibody complexes play a role in modern day medicine and human health. Understanding the molecular basis of antigen binding and recognition by antibodies helps to facilitate the production of better and more potent antibodies for immunotherapy, vaccines and various other applications.


Assuntos
Complexo Antígeno-Anticorpo/química , Complexo Antígeno-Anticorpo/imunologia , Animais , Sítios de Ligação de Anticorpos , Regiões Determinantes de Complementaridade/química , Regiões Determinantes de Complementaridade/imunologia , Epitopos/química , Epitopos/imunologia , Humanos , Modelos Moleculares
5.
Anim Biotechnol ; 30(1): 57-62, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29527970

RESUMO

Foot-and-mouth disease (FMD) is an acute, highly contagious, and economically devastating viral disease of domestic and wildlife species. For effective implementation of FMD control program, there is an imperative need for developing a rapid, sensitive, and specific diagnostics which help in the identification of serotypes involved in the outbreaks. The humoral immune response of the Camelidae is unique since in these animals 75% of circulating antibodies are constituted by heavy-chain antibodies and 25% are conventional immunoglobulin with two identical heavy chains. In the present study, we developed and characterized FMD virus-specific single-domain heavy-chain antibodies (VHHs) against inactivated whole-virus antigens of FMDV serotypes O (INDR2/1975), A (IND40/2000), and Asia 1 (IND63/1972) vaccine strains. After six rounds of panning and enrichment, these VHHs were stably expressed in Escherichia coli cells. The VHHs directed against outer capsid proteins of FMD virus were successfully utilized as the capture antibody in liquid-phase blocking ELISA (LPBE) thus replacing rabbit coating antibodies. Our study demonstrated the utility of FMD virus-specific VHHs as potential candidates in FMD research and diagnostic application.


Assuntos
Anticorpos Antivirais/imunologia , Especificidade de Anticorpos , Camelus/imunologia , Vírus da Febre Aftosa/imunologia , Febre Aftosa/diagnóstico , Anticorpos de Domínio Único/imunologia , Animais , Proteínas do Capsídeo/imunologia , Ensaio de Imunoadsorção Enzimática/veterinária , Escherichia coli/genética , Escherichia coli/metabolismo , Febre Aftosa/virologia , Masculino , Especificidade da Espécie
6.
Methods Mol Biol ; 2702: 347-372, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37679629

RESUMO

Antibody libraries came into existence 30 years ago when the accumulating sequence data of immunoglobulin genes and the advent of PCR technology made it possible to clone antibody gene repertoires. Phage display (most common) and additional display and screening technologies were applied to pan out desired binding specificities from antibody libraries. As other antibody discovery tools, phage display is not an off-the-shelf technology and not offered as a kit but rather requires experience and expertise for making it indeed very useful.Next-generation sequencing (NGS) coupled with bioinformatics is a powerful tool for analyzing large amount of DNA sequence output of the panning. Here, we demonstrate how NGS analysis of phage biopanning (phage-Seq) of complex antibody libraries can facilitate the antibody discovery process and provide insights regarding the biopanning process (see Fig. 1).


Assuntos
Bacteriófagos , Anticorpos de Cadeia Única , Humanos , Anticorpos de Cadeia Única/genética , Genes de Imunoglobulinas , Sequenciamento de Nucleotídeos em Larga Escala , Bioprospecção
7.
J Biochem ; 173(3): 185-195, 2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36525357

RESUMO

VHH antibodies or nanobodies, which are antigen-binding domains of heavy chain antibodies from camelid species, have several advantageous characteristics, including compact molecular size, high productibility in bacteria and easy engineering for functional improvement. Focusing on these advantages of VHHs, we attempted to establish an immunoassay system for detection of Legionella, the causative pathogen of Legionnaires' disease. A VHH phage display library was constructed using cDNA from B cells of alpacas immunized with Legionella pneumophila serogroup1 (LpSG1). Through biopanning, two specific VHH clones were isolated and used to construct a Legionella detection system based on the latex agglutination assay. After engineering the VHHs and improving the assay system, the sensitive detection system was successfully established for the LpSG1 antigen. The immunoassay developed in this study should be useful in easy and sensitive detection of Legionella, the causative agent of Legionnaires' disease, which is a potentially fatal pneumonia.


Assuntos
Legionella , Doença dos Legionários , Anticorpos de Domínio Único , Humanos , Antígenos , Imunoensaio , Cadeias Pesadas de Imunoglobulinas
8.
Front Chem ; 10: 826923, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35449588

RESUMO

Succinimide (Asu) is the intermediate for asparagine deamidation in therapeutic proteins, and it can be readily hydrolyzed to form aspartate and iso-aspartate residues. Moreover, Asu plays an important role in the protein degradation pathways, asparagine deamidation, and aspartic acid isomerization. Here, Asu modification with a high abundance in the framework region (FR) of golimumab was first reported, the effect of denaturing buffer pH on the Asu modification homeostasis was studied, and the results revealed that it was relatively stable over a pH range of 6.0-7.0 whereas a rapid decrease at pH 8.0. Then, the peptide-based multi-attribute method (MAM) analyses showed that the Asu formation was at Asn 43 in the FR of the heavy chain. Meanwhile, the efficacy [affinity, binding and bioactivity, complement-dependent cytotoxicity (CDC) activity, and antibody-dependent cell-mediated cytotoxicity (ADCC) activity] and stability of the Asu modification of golimumab were evaluated, and the current results demonstrated comparable efficacy and stability between the Asu low- and high-abundance groups. Our findings provide valuable insights into Asu modification and its effect on efficacy and stability, and this study also demonstrates that there is a need to develop a broad-spectrum, rapid, and accurate platform to identify and characterize new peaks in the development of therapeutic proteins, particularly for antibody drugs.

9.
Immune Netw ; 18(2): e3, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29732232

RESUMO

To identify the interchangeability of VH and VL framework region (FR) residues, we artificially introduced random mutations at all residue positions in a chicken monoclonal antibody, which has only one functional VH and Vλ gene. When we classified the amino acids into 5 groups by their physicochemical properties, all FR residues could be replaced by another group except L23 (C), H36 (W), H86 (D), H104 (G), and H106 (G). Eighty-two (50.9%), 48 (29.8%), 17 (10.6%), and 9 FR residues (5.6%) could be replaced by 4, 3, 2, and 1 group(s), individually, without significant loss of reactivity. We also confirmed a similar level of versatility with 2 different chicken antibodies. This high level of versatility on FR residues has not been predicted because it has not been observed in the 150 chicken antibodies that we previously generated or in the 1,269 naïve chicken VH sequences publically available. In conclusion, chicken antibody FR residues are highly interchangeable and this property can be applied for improving the physicochemical property of antibody including thermal stability, solubility and viscosity.

10.
Curr Pharm Des ; 22(43): 6519-6526, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27604606

RESUMO

Phage display technology has revolutionized the science of drug discovery by transforming the generation and manipulation of ligands, such as antibody fragments, enzymes, and peptides. The basis of this technology is the expression of recombinant proteins or peptides fused to a phage coat protein, and subsequent isolation of ligands based on a variety of catalytic, physicochemical/binding kinetic and/or biological characteristics. An incredible number of diagnostic and therapeutic domains have been successfully isolated using phage display technology. The variable domain of the New Antigen Receptors (VNAR) found in cartilaginous fish, is also amenable to phage display selection. Whilst not an antibody, VNARs are unquestionable the oldest (450 million years), and smallest antigen binding, single-domains so far identified in the vertebrate kingdom. Their role as an integral part of the adaptive immune system of sharks has been well established, enhancing our understanding of the evolutionary origins of humoral immunity and the unusual but divergent ancestry of the VNARs themselves. VNARs exhibit remarkable physicochemical properties, such as small size, stability in extreme conditions, solubility, molecular flexibility, high affinity and selectivity for target. The purpose of this review is to illustrate the important role phage display has played in the isolation and characterization of potent therapeutic and diagnostic VNAR domains.


Assuntos
Bacteriófagos/genética , Descoberta de Drogas , Receptores de Antígenos/imunologia , Adaptação Fisiológica/imunologia , Animais , Sítios de Ligação , Humanos
11.
MAbs ; 7(4): 693-706, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26018625

RESUMO

Camelid immunoglobulin variable (IGV) regions were found homologous to their human counterparts; however, the germline V repertoires of camelid heavy and light chains are still incomplete and their therapeutic potential is only beginning to be appreciated. We therefore leveraged the publicly available HTG and WGS databases of Lama pacos and Camelus ferus to retrieve the germline repertoire of V genes using human IGV genes as reference. In addition, we amplified IGKV and IGLV genes to uncover the V germline repertoire of Lama glama and sequenced BAC clones covering part of the Lama pacos IGK and IGL loci. Our in silico analysis showed that camelid counterparts of all human IGKV and IGLV families and most IGHV families could be identified, based on canonical structure and sequence homology. Interestingly, this sequence homology seemed largely restricted to the Ig V genes and was far less apparent in other genes: 6 therapeutically relevant target genes differed significantly from their human orthologs. This contributed to efficient immunization of llamas with the human proteins CD70, MET, interleukin (IL)-1ß and IL-6, resulting in large panels of functional antibodies. The in silico predicted human-homologous canonical folds of camelid-derived antibodies were confirmed by X-ray crystallography solving the structure of 2 selected camelid anti-CD70 and anti-MET antibodies. These antibodies showed identical fold combinations as found in the corresponding human germline V families, yielding binding site structures closely similar to those occurring in human antibodies. In conclusion, our results indicate that active immunization of camelids can be a powerful therapeutic antibody platform.


Assuntos
Região Variável de Imunoglobulina , Dobramento de Proteína , Homologia de Sequência de Aminoácidos , Animais , Camelídeos Americanos , Camelus , Cristalografia por Raios X , Humanos , Região Variável de Imunoglobulina/química , Região Variável de Imunoglobulina/genética , Região Variável de Imunoglobulina/imunologia , Estrutura Terciária de Proteína
12.
MAbs ; 7(3): 584-604, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25875246

RESUMO

To harness the potent tumor-killing capacity of T cells for the treatment of CD19(+) malignancies, we constructed AFM11, a humanized tetravalent bispecific CD19/CD3 tandem diabody (TandAb) consisting solely of Fv domains. The molecule exhibits good manufacturability and stability properties. AFM11 has 2 binding sites for CD3 and 2 for CD19, an antigen that is expressed from early B cell development through differentiation into plasma cells, and is an attractive alternative to CD20 as a target for the development of therapeutic antibodies to treat B cell malignancies. Comparison of the binding and cytotoxicity of AFM11 with those of a tandem scFv bispecific T cell engager (BiTE) molecule targeting the same antigens revealed that AFM11 elicited more potent in vitro B cell lysis. Though possessing high affinity to CD3, the TandAb mediates serial-killing of CD19(+) cells with little dependence of potency or efficacy upon effector:target ratio, unlike the BiTE. The advantage of the TandAb over the BiTE was most pronounced at lower effector:target ratios. AFM11 mediated strictly target-dependent T cell activation evidenced by CD25 and CD69 induction, proliferation, and cytokine release, notwithstanding bivalent CD3 engagement. In a NOD/scid xenograft model, AFM11 induced dose-dependent growth inhibition of Raji tumors in vivo, and radiolabeled TandAb exhibited excellent localization to tumor but not to normal tissue. After intravenous administration in mice, half-life ranged from 18.4 to 22.9 h. In a human ex vivo B-cell chronic lymphocytic leukemia study, AFM11 exhibited substantial cytotoxic activity in an autologous setting. Thus, AFM11 may represent a promising therapeutic for treatment of CD19(+) malignancies with an advantageous safety risk profile and anticipated dosing regimen.


Assuntos
Anticorpos Biespecíficos/farmacologia , Anticorpos Antineoplásicos/farmacologia , Antígenos CD19/imunologia , Complexo CD3/imunologia , Neoplasias Experimentais/tratamento farmacológico , Anticorpos de Cadeia Única/farmacologia , Animais , Anticorpos Biespecíficos/química , Anticorpos Biespecíficos/imunologia , Anticorpos Antineoplásicos/química , Anticorpos Antineoplásicos/imunologia , Células CHO , Cricetinae , Cricetulus , Células HEK293 , Humanos , Células Jurkat , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Neoplasias Experimentais/imunologia , Neoplasias Experimentais/patologia , Anticorpos de Cadeia Única/química , Anticorpos de Cadeia Única/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
13.
MAbs ; 6(5): 1327-39, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25517317

RESUMO

A new class of hepatitis C virus (HCV)-targeted therapeutics that is safe, broadly effective and can cope with virus mutations is needed. The HCV's NS5B is highly conserved and different from human protein, and thus it is an attractive target for anti-HCV therapeutics development. In this study, NS5B bound-phage clones selected from a human single chain variable antibody fragment (scFv) phage display library were used to transform appropriate E. coli bacteria. Two scFv inhibiting HCV polymerase activity were selected. The scFvs were linked to a cell penetrating peptide to make cell penetrable scFvs. The transbodies reduced the HCV RNA and infectious virus particles released into the culture medium and inside hepatic cells transfected with a heterologous HCV replicon. They also rescued the innate immune response of the transfected cells. Phage mimotope search and homology modeling/molecular docking revealed the NS5B subdomains and residues bound by the scFvs. The scFv mimotopes matched residues of the NS5B, which are important for nucleolin binding during HCV replication, as well as residues that interconnect the fingers and thumb domains for forming a polymerase active groove. Both scFvs docked on several residues at the thumb armadillo-like fold that could be the polymerase interactive sites of other viral/host proteins for the formation of the replication complex and replication initiation. In conclusion, human transbodies that inhibited HCV RdRp activity and HCV replication and restored the host innate immune response were produced. They are potentially future interferon-free anti-HCV candidates, particularly in combination with other cognates that are specific to NS5B epitopes and other HCV enzymes.


Assuntos
Hepacivirus/efeitos dos fármacos , RNA Polimerase Dependente de RNA/antagonistas & inibidores , Anticorpos de Cadeia Única/farmacologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Replicação Viral/efeitos dos fármacos , Linhagem Celular Tumoral , Técnicas de Visualização da Superfície Celular , Sobrevivência Celular/efeitos dos fármacos , Epitopos/genética , Epitopos/metabolismo , Hepacivirus/genética , Hepacivirus/fisiologia , Hepatite C/prevenção & controle , Hepatite C/virologia , Humanos , Imunidade Inata/genética , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/metabolismo , Microscopia Confocal , Modelos Moleculares , Mutação , Biblioteca de Peptídeos , Ligação Proteica , Estrutura Terciária de Proteína , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo , Anticorpos de Cadeia Única/química , Anticorpos de Cadeia Única/metabolismo , Peptídeos e Proteínas Associados a Receptores de Fatores de Necrose Tumoral/genética , Peptídeos e Proteínas Associados a Receptores de Fatores de Necrose Tumoral/metabolismo , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo
14.
Immune Network ; : e3-2018.
Artigo em Inglês | WPRIM | ID: wpr-714037

RESUMO

To identify the interchangeability of V(H) and V(L) framework region (FR) residues, we artificially introduced random mutations at all residue positions in a chicken monoclonal antibody, which has only one functional V(H) and Vλ gene. When we classified the amino acids into 5 groups by their physicochemical properties, all FR residues could be replaced by another group except L23 (C), H36 (W), H86 (D), H104 (G), and H106 (G). Eighty-two (50.9%), 48 (29.8%), 17 (10.6%), and 9 FR residues (5.6%) could be replaced by 4, 3, 2, and 1 group(s), individually, without significant loss of reactivity. We also confirmed a similar level of versatility with 2 different chicken antibodies. This high level of versatility on FR residues has not been predicted because it has not been observed in the 150 chicken antibodies that we previously generated or in the 1,269 naïve chicken V(H) sequences publically available. In conclusion, chicken antibody FR residues are highly interchangeable and this property can be applied for improving the physicochemical property of antibody including thermal stability, solubility and viscosity.


Assuntos
Aminoácidos , Anticorpos , Galinhas , Região Variável de Imunoglobulina , Solubilidade , Hipermutação Somática de Imunoglobulina , Viscosidade
15.
FEBS Lett ; 587(20): 3335-40, 2013 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-24021643

RESUMO

The nucleotide sequence of the unique neutralizing monoclonal antibody D32.10 raised against a conserved conformational epitope shared between E1 and E2 on the serum-derived hepatitis C virus (HCV) envelope was determined. Subsequently, the recombinant single-chain Fv fragment (scFv) was cloned and expressed in Escherichia coli, and its molecular characterization was assessed using multi-angle laser light scattering. The scFv mimicked the antibody in binding to the native serum-derived HCV particles from patients, as well as to envelope E1E2 complexes and E1, E2 glycoproteins carrying the viral epitope. The scFv D32.10 competed with the parental IgG for binding to antigen, and therefore could be a promising candidate for therapeutics and diagnostics.


Assuntos
Anticorpos Monoclonais/química , Hepacivirus/metabolismo , Anticorpos de Cadeia Única/química , Proteínas Virais/imunologia , Anticorpos Monoclonais/metabolismo , Biologia Computacional , Escherichia coli , Anticorpos de Cadeia Única/metabolismo , Proteínas Virais/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa