Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Cell Mol Life Sci ; 72(24): 4721-57, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26390974

RESUMO

Autophagy represents an intracellular degradation process which is involved in both cellular homeostasis and disease settings. In the last two decades, the molecular machinery governing this process has been characterized in detail. To date, several key factors regulating this intracellular degradation process have been identified. The so-called autophagy-related (ATG) genes and proteins are central to this process. However, several additional molecules contribute to the outcome of an autophagic response. Several review articles describing the molecular process of autophagy have been published in the recent past. In this review article we would like to add the most recent findings to this knowledge, and to give an overview of the network character of the autophagy signaling machinery.


Assuntos
Autofagia/fisiologia , Transdução de Sinais , Animais , Humanos , Camundongos , Modelos Biológicos , Fagossomos , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteínas Quinases/fisiologia , Ratos
2.
Autophagy ; : 1-14, 2024 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-38762759

RESUMO

Macroautophagy/autophagy is essential for the degradation and recycling of cytoplasmic materials. The initiation of this process is determined by phosphatidylinositol-3-kinase (PtdIns3K) complex, which is regulated by factor BECN1 (beclin 1). UFMylation is a novel ubiquitin-like modification that has been demonstrated to modulate several cellular activities. However, the role of UFMylation in regulating autophagy has not been fully elucidated. Here, we found that VCP/p97 is UFMylated on K109 by the E3 UFL1 (UFM1 specific ligase 1) and this modification promotes BECN1 stabilization and assembly of the PtdIns3K complex, suggesting a role for VCP/p97 UFMylation in autophagy initiation. Mechanistically, VCP/p97 UFMylation stabilizes BECN1 through ATXN3 (ataxin 3)-mediated deubiquitination. As a key component of the PtdIns3K complex, stabilized BECN1 facilitates assembly of this complex. Re-expression of VCP/p97, but not the UFMylation-defective mutant, rescued the VCP/p97 depletion-induced increase in MAP1LC3B/LC3B protein expression. We also showed that several pathogenic VCP/p97 mutations identified in a variety of neurological disorders and cancers were associated with reduced UFMylation, thus implicating VCP/p97 UFMylation as a potential therapeutic target for these diseases. Abbreviation: ATG14:autophagy related 14; Baf A1:bafilomycin A1;CMT2Y: Charcot-Marie-Toothdisease, axonal, 2Y; CYB5R3: cytochromeb5 reductase 3; DDRGK1: DDRGK domain containing 1; DMEM:Dulbecco'smodified Eagle's medium;ER:endoplasmic reticulum; FBS:fetalbovine serum;FTDALS6:frontotemporaldementia and/or amyotrophic lateral sclerosis 6; IBMPFD1:inclusion bodymyopathy with early-onset Paget disease with or withoutfrontotemporal dementia 1; LC-MS/MS:liquid chromatography tandem mass spectrometry; MAP1LC3B/LC3B:microtubule associated protein 1 light chain 3 beta; MS: massspectrometry; NPLOC4: NPL4 homolog, ubiquitin recognition factor;PIK3C3: phosphatidylinositol 3-kinase catalytic subunit type 3;PIK3R4: phosphoinositide-3-kinase regulatory subunit 4; PtdIns3K:phosphatidylinositol 3-kinase; RPL26: ribosomal protein L26; RPN1:ribophorin I; SQSTM1/p62: sequestosome 1; UBA5: ubiquitin likemodifier activating enzyme 5; UFC1: ubiquitin-fold modifierconjugating enzyme 1; UFD1: ubiquitin recognition factor in ERassociated degradation 1; UFL1: UFM1 specific ligase 1; UFM1:ubiquitin fold modifier 1; UFSP2: UFM1 specific peptidase 2; UVRAG:UV radiation resistance associated; VCP/p97: valosin containingprotein; WT: wild-type.

3.
Autophagy ; 19(11): 2884-2898, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37409929

RESUMO

ABBREVIATIONS: AMBRA1 autophagy and beclin 1 regulator 1; ATG14 autophagy related 14; ATG5 autophagy related 5; ATG7 autophagy related 7; BECN1 beclin 1; BECN2 beclin 2; CC coiled-coil; CQ chloroquine CNR1/CB1R cannabinoid receptor 1 DAPI 4',6-diamidino-2-phenylindole; dCCD delete CCD; DRD2/D2R dopamine receptor D2 GPRASP1/GASP1 G protein-coupled receptor associated sorting protein 1 GPCR G-protein coupled receptor; ITC isothermal titration calorimetry; IP immunoprecipitation; KD knockdown; KO knockout; MAP1LC3/LC3 microtubule associated protein 1 light chain 3; NRBF2 nuclear receptor binding factor 2; OPRD1/DOR opioid receptor delta 1 PIK3C3/VPS34 phosphatidylinositol 3-kinase catalytic subunit type 3; PIK3R4/VPS15 phosphoinositide-3-kinase regulatory subunit 4; PtdIns3K class III phosphatidylinositol 3-kinase; PtdIns3P phosphatidylinositol-3-phosphate; RUBCN rubicon autophagy regulator; SQSTM1/p62 sequestosome 1; UVRAG UV radiation resistance associated; VPS vacuolar protein sorting; WT wild type.

4.
Autophagy ; 17(5): 1063-1064, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33784947

RESUMO

VCP, a conserved ATPase, is involved in several cellular processes, and mutations in this protein are associated with various diseases. VCP also plays a role in autophagosome maturation. However, because a deficiency in autophagosome maturation presents a readily observable phenotype, other roles of VCP in autophagy regulation, in particular in the initial steps of autophagosome formation, may have been overlooked. In a recently published paper, using small-molecule inhibitors, Hill et al. showed that VCP regulates autophagy initiation through both stabilization of BECN1 and enhancement of phosphati-dylinositol 3-kinase (PtdIns3K) complex assembly.


Assuntos
Autofagia/fisiologia , Proteína Beclina-1/metabolismo , Proteína com Valosina/metabolismo , Adenosina Trifosfatases/metabolismo , Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Humanos
5.
Autophagy ; 17(12): 4512-4514, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34705610

RESUMO

Macroautophagy/autophagy is special because the double-layer lipid-formed autophagosome is formed by de novo generation. Phosphatidylinositol-3-phosphate (PtdIns3P) produced by class III phosphatidylinositol 3-kinase complex I (PtdIns3K-CI) is an essential source lipid for the formation of autophagosomes. However, how autophagy is initiated is unknown. In other words, the mechanism by which PtdIns3K-CI is recruited to the phagophore assembly site (PAS) to initiate autophagosome formation is unclear. We recently uncovered the pivotal role of yeast Vac8 in autophagy initiation through the recruitment of PtdIns3K-CI to the PAS. N-terminal palmitoylation of Vac8 anchors it to the vacuole membrane, and the middle ARM domains bind PtdIns3K-CI, leading to the generation of PtdIns3P at the PAS and subsequent autophagosome formation. We found that mouse ARMC3 is the homolog of yeast Vac8 and that its autophagic roles are conserved. Interestingly, spermatids from mice with Armc3 deletion showed blocked ribophagy, low energy levels of mitochondria and motionless flagella, which caused male infertility. These findings revealed a germ tissue-specific autophagic function of ARMC3 in complex eukaryotic species.


Assuntos
Proteínas do Domínio Armadillo , Autofagia , Classe III de Fosfatidilinositol 3-Quinases , Proteínas de Saccharomyces cerevisiae , Animais , Proteínas do Domínio Armadillo/metabolismo , Autofagossomos/metabolismo , Autofagia/fisiologia , Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Masculino , Camundongos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Espermatogênese , Proteínas de Transporte Vesicular/metabolismo
6.
Autophagy ; 17(10): 2891-2904, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33222586

RESUMO

A key mediator of macroautophagy/autophagy induction is the class III phosphatidylinositol 3-kinase complex I (PtdIns3K-C1) consisting of PIK3C3/VPS34, PIK3R4/VPS15, BECN1, and ATG14. Although several proteins are known to enhance or decrease PtdIns3K-C1 activity, our understanding of the molecular regulation of PtdIns3K-C1 is still incomplete. Previously, we identified a Golgi-associated protein, GLIPR2, in a screen for proteins that interact with amino acids 267-284 of BECN1, a region of BECN1 sufficient to induce autophagy when fused to a cell penetrating leader sequence. In this study, we used CRISPR-Cas9-mediated depletion of GLIPR2 in cells and mice to investigate the role of GLIPR2 in the regulation of autophagy and PtdIns3K-C1 activity. Depletion of GLIPR2 in HeLa cells increased autelophagic flux and generation of phosphatidylinositol 3-phosphate (PtdIns3P). GLIPR2 knockout resulted in less compact Golgi structures, which was also observed in autophagy-inducing conditions such as amino acid starvation or Tat-BECN1 peptide treatment. Importantly, the binding of GLIPR2 to purified PtdIns3K-C1 inhibited the in vitro lipid kinase activity of PtdIns3K-C1. Moreover, the tissues of glipr2 knockout mice had increased basal autophagic flux as well as increased recruitment of the PtdIns3P-binding protein, WIPI2. Taken together, our findings demonstrate that GLIPR2 is a negative regulator of PtdIns3K-C1 activity and basal autophagy.Abbreviations: ATG14: autophagy related 14; Baf A1: bafilomycin A1; BARA: ß-α repeated, autophagy-specific; CQ: chloroquine; GFP: green fluorescent protein; GLIPR2: GLI pathogenesis related 2; HBSS: Hanks' balanced salt solution; KO: knockout; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; PBS: phosphate-buffered saline; PtdIns3K-C1: phosphatidylinositol 3-kinase complex I; PtdIns3P: phosphatidylinositol-3-phosphate; SEM: standard error of the mean; WIPI2: WD repeat domain, phosphoinositide interacting 2.


Assuntos
Autofagia , Classe III de Fosfatidilinositol 3-Quinases , Proteínas de Membrana , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Animais , Autofagia/fisiologia , Proteínas Relacionadas à Autofagia/metabolismo , Proteína Beclina-1/metabolismo , Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Células HeLa , Humanos , Proteínas de Membrana/metabolismo , Camundongos , Fosforilação
7.
Autophagy ; 16(11): 2036-2051, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-31941401

RESUMO

Macroautophagy (autophagy) is driven by the coordinated actions of core autophagy-related (Atg) proteins. Atg8, the core Atg protein generally considered acting most downstream, has recently been shown to interact with other core Atg proteins via their Atg8-family-interacting motifs (AIMs). However, the extent, functional consequence, and evolutionary conservation of such interactions remain inadequately understood. Here, we show that, in the fission yeast Schizosaccharomyces pombe, Atg38, a subunit of the phosphatidylinositol 3-kinase (PtdIns3K) complex I, interacts with Atg8 via an AIM, which is highly conserved in Atg38 proteins of fission yeast species, but not conserved in Atg38 proteins of other species. This interaction recruits Atg38 to Atg8 on the phagophore assembly site (PAS) and consequently enhances PAS accumulation of the PtdIns3K complex I and Atg proteins acting downstream of the PtdIns3K complex I, including Atg8. The disruption of the Atg38-Atg8 interaction leads to the reduction of autophagosome size and autophagic flux. Remarkably, the loss of this interaction can be compensated by an artificial Atg14-Atg8 interaction. Our findings demonstrate that the Atg38-Atg8 interaction in fission yeast establishes a positive feedback loop between Atg8 and the PtdIns3K complex I to promote efficient autophagosome formation, underscore the prevalence and diversity of AIM-mediated connections within the autophagic machinery, and reveal unforeseen flexibility of such connections. Abbreviations: AIM: Atg8-family-interacting motif; AP-MS: affinity purification coupled with mass spectrometry; Atg: autophagy-related; FLIP: fluorescence loss in photobleaching; PAS: phagophore assembly site; PB: piggyBac; PE: phosphatidylethanolamine; PtdIns3K: phosphatidylinositol 3-kinase; PtdIns3P: phosphatidylinositol 3-phosphate.


Assuntos
Autofagossomos/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Autofagia/fisiologia , Fagossomos/metabolismo , Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Ligação Proteica/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/metabolismo , Leveduras
8.
Autophagy ; 15(5): 753-770, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30523761

RESUMO

Macroautophagy/autophagy is a lysosome-dependent catabolic process for the turnover of proteins and organelles in eukaryotes. Autophagy plays an important role in immunity and inflammation, as well as metabolism and cell survival. Diverse immune and inflammatory signals induce autophagy in macrophages through pattern recognition receptors, such as toll-like receptors (TLRs). However, the physiological role of autophagy and its signaling mechanisms in microglia remain poorly understood. Microglia are phagocytic immune cells that are resident in the central nervous system and share many characteristics with macrophages. Here, we show that autophagic flux and expression of autophagy-related (Atg) genes in microglia are significantly suppressed upon TLR4 activation by lipopolysaccharide (LPS), in contrast to their stimulation by LPS in macrophages. Metabolomics analysis of the levels of phosphatidylinositol (PtdIns) and its 3-phosphorylated form, PtdIns3P, in combination with bioinformatics prediction, revealed an LPS-induced reduction in the synthesis of PtdIns and PtdIns3P in microglia but not macrophages. Interestingly, inhibition of PI3K, but not MTOR or MAPK1/3, restored autophagic flux with concomitant dephosphorylation and nuclear translocation of FOXO3. A constitutively active form of FOXO3 also induced autophagy, suggesting FOXO3 as a downstream target of the PI3K pathway for autophagy inhibition. LPS treatment impaired phagocytic capacity of microglia, including MAP1LC3B/LC3-associated phagocytosis (LAP) and amyloid ß (Aß) clearance. PI3K inhibition restored LAP and degradation capacity of microglia against Aß. These findings suggest a unique mechanism for the regulation of microglial autophagy and point to the PI3K-FOXO3 pathway as a potential therapeutic target to regulate microglial function in brain disorders. Abbreviations: Atg: autophagy-related gene; Aß: amyloid-ß; BafA1: bafilomycin A1; BECN1: beclin 1, autophagy related; BMDM: bone marrow-derived macrophage; CA: constitutively active; CNS: central nervous system; ZFYVE1/DFCP1: zinc finger, FYVE domain containing 1; FOXO: forkhead box O; ELISA:enzyme-linked immunosorbent assay; HBSS: Hanks balanced salt solution; LAP: LC3-associated phagocytosis; MAP1LC3B: microtubule-associated protein 1 light chain 3; LPS: lipopolysaccharide; LY: LY294002; MTOR: mechanistic target of rapamycin kinase; Pam3CSK4: N-palmitoyl-S-dipalmitoylglyceryl Cys-Ser-(Lys)4; PtdIns: phosphatidylinositol; PtdIns3P: phosphatidylinositol-3-phosphate; PLA: proximity ligation assay; Poly(I:C): polyinosinic-polycytidylic acid; qRT-PCR: quantitative real-time polymerase chain reaction; RPS6KB1: ribosomal protein S6 kinase, polypeptide 1; TLR: Toll-like receptor; TNF: tumor necrosis factor; TFEB: transcription factor EB; TSPO: translocator protein.


Assuntos
Autofagia/genética , Proteína Forkhead Box O3/genética , Microglia/fisiologia , Fagocitose/genética , Receptor 4 Toll-Like/fisiologia , Peptídeos beta-Amiloides/farmacologia , Animais , Animais Recém-Nascidos , Autofagia/efeitos dos fármacos , Células Cultivadas , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Proteína Forkhead Box O3/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosfatidilinositol 3-Quinases/metabolismo , Células RAW 264.7 , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo
9.
Small GTPases ; 10(5): 343-349, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-28650718

RESUMO

Intracellular pathogens often exploit RAB functions to establish a safe haven in which to survive and proliferate. Ehrlichia chaffeensis, an obligatory intracellular bacterium, resides in specialized membrane-bound inclusions that have early endosome-like characteristics, e.g., resident RAB5 GTPase and RAB5 effectors, including VPS34 (the catalytic subunit of class III phosphatidylinositol 3-kinase), but the inclusions lack late endosomal or lysosomal markers. Within inclusions, Ehrlichia obtains host-derived nutrients by inducing RAB5-regulated autophagy using Ehrlichia translocated factor-1 deployed by its type IV secretion system. This manipulation of RAB5 by a bacterial molecule offers a simple strategy for Ehrlichia to avoid destruction in lysosomes and obtain nutrients, membrane components, and a homeostatic intra-host-cell environment in which to grow.


Assuntos
Morte Celular Autofágica , Ehrlichia chaffeensis/fisiologia , Ehrlichiose/metabolismo , Interações Hospedeiro-Parasita/fisiologia , Sistemas de Secreção Tipo IV/metabolismo , Proteínas rab5 de Ligação ao GTP/metabolismo , Animais , Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Ehrlichiose/patologia , Endossomos/metabolismo , Endossomos/microbiologia , Humanos , Lisossomos/metabolismo , Lisossomos/microbiologia
10.
Autophagy ; 15(10): 1787-1800, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30894053

RESUMO

It has been indicated that the Golgi apparatus contributes to autophagy, but how it is involved in autophagosome formation and maturation is not well understood. Here we show that amino acid starvation causes trans-Golgi derived membrane fragments to colocalize with autophagosomes. Depletion of the Golgi stacking protein GORASP2/GRASP55, but not GORASP1/GRASP65, increases both MAP1LC3 (LC3)-II and SQSTM1/p62 levels. We demonstrate that GORASP2 facilitates autophagosome-lysosome fusion by physically linking autophagosomes and lysosomes through the interactions with LC3 on autophagosomes and LAMP2 on late endosomes/lysosomes. Furthermore, we provide evidence that GORASP2 interacts with BECN1 to facilitate the assembly and membrane association of the phosphatidylinositol 3-kinase (PtdIns3K) UVRAG complex. These findings indicate that GORASP2 plays an important role in autophagosome maturation during amino acid starvation. Abbreviations: ATG14: autophagy related 14; BafA1: bafilomycin A1; BSA: bovine serum albumin; CQ: chloroquine; EBSS: earle's balanced salt solution; EM: electron microscopy; EEA1: early endosome antigen 1; GFP: green fluorescent protein; GORASP1/GRASP65: golgi reassembly stacking protein 1; GORASP2/GRASP55: golgi reassembly stacking protein 2; LAMP1: lysosomal-associated membrane protein 1; LAMP2: lysosomal-associated membrane protein 2; MAP1LC3: microtubule associated protein 1 light chain 3; MTOR: mechanistic target of rapamycin kinase; PBS: phosphate-buffered saline; PtdIns3K: phosphatidylinositol 3-kinase; PtdIns3P: phosphatidylinositol 3-phosphate; PK: protease K; PNS: post-nuclear supernatant; RFP: red fluorescent protein; SD: standard deviation; TGN: trans-Golgi network; UVRAG: UV radiation resistance associated.


Assuntos
Autofagossomos/fisiologia , Proteínas da Matriz do Complexo de Golgi/fisiologia , Lisossomos/fisiologia , Fusão de Membrana/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Autofagossomos/metabolismo , Autofagia/genética , Células Cultivadas , Proteínas da Matriz do Complexo de Golgi/genética , Células HeLa , Humanos , Lisossomos/metabolismo , Complexos Multiproteicos/metabolismo , Complexos Multiproteicos/fisiologia , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/fisiologia , Fosfatos de Fosfatidilinositol/metabolismo , Ratos , Proteínas Supressoras de Tumor/fisiologia
11.
Autophagy ; 14(12): 2104-2116, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30081750

RESUMO

The initiation of macroautophagy/autophagy is tightly regulated by the upstream ULK1 kinase complex, which affects many downstream factors including the PtdIns3K complex. The phosphorylation of the right position at the right time on downstream molecules is governed by proper complex formation. One component of the ULK1 complex, ATG101, known as an accessory protein, is a stabilizer of ATG13 in cells. The WF finger region of ATG101 plays an important role in the recruitment of WIPI1 (WD repeat domain, phosphoinositide interacting protein 1) and ZFYVE1 (zinc finger FYVE-type containing 1). Here, we report that the C-terminal region identified in the structure of the human ATG101-ATG13HORMA complex is responsible for the binding of the PtdIns3K complex. This region adopts a ß-strand conformation in free ATG101, but either an α-helix or random coil in our ATG101-ATG13HORMA complex, which protrudes from the core and interacts with other molecules. The C-terminal deletion of ATG101 shows a significant defect in the interaction with PtdIns3K components and subsequently impairs autophagosome formation. This result clearly presents an additional role of ATG101 for bridging the ULK1 and PtdIns3K complexes in the mammalian autophagy process. Abbreviations: ATG: autophagy related; BECN1: beclin 1; GFP: green fluorescent protein; HORMA: Hop1p/Rev7p/MAD2; HsATG13HORMA: HORMA domain of ATG13 from Homo sapiens; KO: knockout; MAD2: mitotic arrest deficient 2 like 1; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; PIK3C3/VPS34: phosphatidylinositol 3-kinase catalytic subunit type 3; PIK3R4/VPS15: phosphoinositide-3-kinase regulatory subunit 4; PtdIns3K: phosphatidylinositol 3-kinase; RB1CC1/FIP200: RB1 inducible coiled-coil 1; SAXS: small-angle X-ray scattering; ScAtg13HORMA: HORMA domain of Atg13 from Sccharomyces cerevisiae; SEC-SAXS: size-exclusion chromatography with small-angle X-ray scattering; SpAtg13HORMA: HORMA domain of Atg13 from Schizosaccharomyces pombe; SQSTM1/p62: sequestosome 1; ULK1: unc51-like autophagy activating kinase 1; UVRAG: UV radiation resistance associated; WIPI1: WD repeat domain: phosphoinositide interacting 1; ZFYVE1/DFCP1: zinc finger FYVE-type containing 1.


Assuntos
Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Proteínas Relacionadas à Autofagia/química , Proteínas Relacionadas à Autofagia/metabolismo , Autofagia/fisiologia , Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteína VPS15 de Distribuição Vacuolar/metabolismo , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/metabolismo , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/química , Classe III de Fosfatidilinositol 3-Quinases/química , Cristalografia por Raios X , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Masculino , Modelos Moleculares , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas/fisiologia , Espalhamento a Baixo Ângulo , Células Tumorais Cultivadas , Difração de Raios X
12.
Methods Enzymol ; 587: 257-269, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28253960

RESUMO

Autophagy is the major cellular process of degradation and is modulated by several signaling pathways. Phosphatidylinositol 3-kinase (PtdIns3K) class III (Vps34) and PtdIns3K class I regulate the autophagy pathway positively and negatively, respectively. Both classes of PtdIns3K participate in the synthesis of phosphatidylinositol 3-phosphate (PtdIns3P), which plays a crucial role in autophagosome biogenesis and membrane traffic. PtdIns3P is a membrane phospholipid that is associated with endogenous FYVE domain-containing proteins. Indeed, such interactions facilitate autophagosome fusion with lysosomes and subsequent cargo degradation. During starvation-induced autophagy, the expression of FYVE domain-containing proteins increases, and their binding to PtdIns3P is strengthened. Nonetheless, not all FYVE domain proteins are related to the induction of autophagy. This method report presents the quantification of PtdIns3P synthesis by using cells either transiently transfected with or stably expressing FYVE-dsRed.


Assuntos
Autofagia , Microscopia de Fluorescência/métodos , Biologia Molecular/métodos , Fosfatos de Fosfatidilinositol/biossíntese , Proteínas Recombinantes/metabolismo , Linhagem Celular , Corantes Fluorescentes/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Fosfatos de Fosfatidilinositol/análise , Proteínas Recombinantes/análise , Proteínas Recombinantes/genética
13.
Autophagy ; 13(12): 2028-2040, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28980867

RESUMO

Alzheimer disease (AD) is the most common neurodegenerative disease characterized by the deposition of amyloid plaque in the brain. The autophagy-associated PIK3C3-containing phosphatidylinositol 3-kinase (PtdIns3K) complex has been shown to interfere with APP metabolism and amyloid beta peptide (Aß) homeostasis via poorly understood mechanisms. Here we report that NRBF2 (nuclear receptor binding factor 2), a key component and regulator of the PtdIns3K, is involved in APP-CTFs homeostasis in AD cell models. We found that NRBF2 interacts with APP in vivo and its expression levels are reduced in hippocampus of 5XFAD AD mice; we further demonstrated that NRBF2 overexpression promotes degradation of APP C-terminal fragments (APP-CTFs), and reduces Aß1-40 and Aß1-42 levels in human mutant APP-overexpressing cells. Conversely, APP-CTFs, Aß1-40 and Aß1-42 levels were increased in Nrbf2 knockdown or nrbf2 knockout cells. Furthermore, NRBF2 positively regulates autophagy in neuronal cells and NRBF2-mediated reduction of APP-CTFs levels is autophagy dependent. Importantly, nrbf2 knockout attenuates the recruitment of APP and APP-CTFs into phagophores and the sorting of APP and APP-CTFs into endosomal intralumenal vesicles, which is accompanied by the accumulation of the APP and APP-CTFs into RAB5-positive early endosomes. Collectively, our results reveal the potential connection between NRBF2 and the AD-associated protein APP by showing that NRBF2 plays an important role in regulating degradation of APP-CTFs through modulating autophagy.


Assuntos
Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/metabolismo , Autofagia , Fragmentos de Peptídeos/metabolismo , Proteólise , Fatores de Transcrição/metabolismo , Animais , Proteínas Relacionadas à Autofagia , Modelos Animais de Doenças , Endossomos/metabolismo , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Camundongos Transgênicos , Modelos Biológicos , Neurônios/metabolismo , Ligação Proteica , Transativadores
14.
Autophagy ; 12(6): 1047-8, 2016 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-27124708

RESUMO

As a central node of the macroautophagy/autophagy process, the BECN1/Beclin1-PIK3C3/VPS34 complex participates in different steps of autophagy by interacting with multiple molecules. The ATG14-associated PIK3C3 complex is involved in autophagy initiation, whereas the UVRAG-associated complex mainly modulates autophagosome maturation and endosome fusion. However, the molecular mechanism that coordinates the sequential execution of the autophagy program remains unknown. We have recently discovered that a Golgi-resident protein, PAQR3, regulates autophagy initiation as it preferentially facilitates the formation of the ATG14-linked PIK3C3 complex instead of the UVRAG-associated complex. Upon glucose starvation, AMPK directly phosphorylates T32 of PAQR3, which is crucial for the activation of the ATG14-associated class III PtdIns3K. Furthermore, Paqr3-deleted mice have a deficiency in exercise-induced autophagy as well as behavioral disorders. Thus, this work not only uncovers the regulatory mechanism of PAQR3 on autophagy initiation, but also provides a potential candidate therapeutic target for neurodegenerative diseases.


Assuntos
Proteínas Relacionadas à Autofagia/metabolismo , Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Glucose/deficiência , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animais , Ativação Enzimática , Proteínas de Membrana , Camundongos Knockout , Modelos Biológicos
15.
Autophagy ; 12(11): 2145-2166, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27541856

RESUMO

Ehrlichia chaffeensis is an obligatory intracellular bacterium that causes a potentially fatal emerging zoonosis, human monocytic ehrlichiosis. E. chaffeensis has a limited capacity for biosynthesis and metabolism and thus depends mostly on host-synthesized nutrients for growth. Although the host cell cytoplasm is rich with these nutrients, as E. chaffeensis is confined within the early endosome-like membrane-bound compartment, only host nutrients that enter the compartment can be used by this bacterium. How this occurs is unknown. We found that ehrlichial replication depended on autophagy induction involving class III phosphatidylinositol 3-kinase (PtdIns3K) activity, BECN1 (Beclin 1), and ATG5 (autophagy-related 5). Ehrlichia acquired host cell preincorporated amino acids in a class III PtdIns3K-dependent manner and ehrlichial growth was enhanced by treatment with rapamycin, an autophagy inducer. Moreover, ATG5 and RAB5A/B/C were routed to ehrlichial inclusions. RAB5A/B/C siRNA knockdown, or overexpression of a RAB5-specific GTPase-activating protein or dominant-negative RAB5A inhibited ehrlichial infection, indicating the critical role of GTP-bound RAB5 during infection. Both native and ectopically expressed ehrlichial type IV secretion effector protein, Etf-1, bound RAB5 and the autophagy-initiating class III PtdIns3K complex, PIK3C3/VPS34, and BECN1, and homed to ehrlichial inclusions. Ectopically expressed Etf-1 activated class III PtdIns3K as in E. chaffeensis infection and induced autophagosome formation, cleared an aggregation-prone mutant huntingtin protein in a class III PtdIns3K-dependent manner, and enhanced ehrlichial proliferation. These data support the notion that E. chaffeensis secretes Etf-1 to induce autophagy to repurpose the host cytoplasm and capture nutrients for its growth through RAB5 and class III PtdIns3K, while avoiding autolysosomal killing.


Assuntos
Autofagia , Proteínas de Bactérias/metabolismo , Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Ehrlichia chaffeensis/crescimento & desenvolvimento , Ehrlichia chaffeensis/metabolismo , Proteínas rab5 de Ligação ao GTP/metabolismo , Adenina/análogos & derivados , Adenina/farmacologia , Animais , Autofagossomos/efeitos dos fármacos , Autofagossomos/metabolismo , Autofagossomos/ultraestrutura , Autofagia/efeitos dos fármacos , Proteína 5 Relacionada à Autofagia/metabolismo , Proteína Beclina-1/metabolismo , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Proliferação de Células/efeitos dos fármacos , Cães , Ehrlichia chaffeensis/efeitos dos fármacos , Ehrlichiose/microbiologia , Ehrlichiose/patologia , Ativação Enzimática/efeitos dos fármacos , Ácido Glutâmico/metabolismo , Glutamina/metabolismo , Guanosina Trifosfato/metabolismo , Células HEK293 , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Humanos , Proteína Huntingtina/metabolismo , Corpos de Inclusão/metabolismo , Proteínas Mutantes/metabolismo , Ligação Proteica/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Sirolimo/farmacologia , Ubiquitinação/efeitos dos fármacos
16.
Autophagy ; 11(4): 701-15, 2015 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-25915714

RESUMO

Aquatic photosynthetic eukaryotes represent highly diverse groups (green, red, and chromalveolate algae) derived from multiple endosymbiosis events, covering a wide spectrum of the tree of life. They are responsible for about 50% of the global photosynthesis and serve as the foundation for oceanic and fresh water food webs. Although the ecophysiology and molecular ecology of some algal species are extensively studied, some basic aspects of algal cell biology are still underexplored. The recent wealth of genomic resources from algae has opened new frontiers to decipher the role of cell signaling pathways and their function in an ecological and biotechnological context. Here, we took a bioinformatic approach to explore the distribution and conservation of TOR and autophagy-related (ATG) proteins (Atg in yeast) in diverse algal groups. Our genomic analysis demonstrates conservation of TOR and ATG proteins in green algae. In contrast, in all 5 available red algal genomes, we could not detect the sequences that encode for any of the 17 core ATG proteins examined, albeit TOR and its interacting proteins are conserved. This intriguing data suggests that the autophagy pathway is not conserved in red algae as it is in the entire eukaryote domain. In contrast, chromalveolates, despite being derived from the red-plastid lineage, retain and express ATG genes, which raises a fundamental question regarding the acquisition of ATG genes during algal evolution. Among chromalveolates, Emiliania huxleyi (Haptophyta), a bloom-forming coccolithophore, possesses the most complete set of ATG genes, and may serve as a model organism to study autophagy in marine protists with great ecological significance.


Assuntos
Autofagia/genética , Autofagia/fisiologia , Fotossíntese/fisiologia , Simbiose/fisiologia , Animais , Sequência de Bases/genética , Evolução Molecular , Humanos , Plastídeos/metabolismo , Rodófitas/metabolismo , Simbiose/genética
17.
Autophagy ; 11(6): 918-27, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25996471

RESUMO

Deficient autophagy causes a distinct phenotype in Dictyostelium discoideum, characterized by the formation of multitips at the mound stage. This led us to analyze autophagy in a number of multitipped mutants described previously (tipA(-), tipB(-), tipC(-), and tipD(-)). We found a clear autophagic dysfunction in tipC(-) and tipD(-) while the others showed no defects. tipD codes for a homolog of Atg16, which confirms the role of this protein in Dictyostelium autophagy and validates our approach. The tipC-encoded protein is highly similar to human VPS13A (also known as chorein), whose mutations cause the chorea-acanthocytosis syndrome. No member of the VPS13 protein family has been previously related to autophagy despite the presence of a region of similarity to Atg2 at the C terminus. This region also contains the conserved domain of unknown function DUF1162. Of interest, the expression of the TipC C-terminal coding sequence containing these 2 motifs largely complemented the mutant phenotype. Dictyostelium cells lacking TipC displayed a reduced number of autophagosomes visualized with the markers GFP-Atg18 and GFP-Atg8 and an impaired autophagic degradation as determined by a proteolytic cleavage assay. Downregulation of human VPS13A in HeLa cells by RNA interference confirmed the participation of the human protein in autophagy. VPS13A-depleted cells showed accumulation of autophagic markers and impaired autophagic flux.


Assuntos
Autofagia/fisiologia , Dictyostelium/metabolismo , Mutação/genética , Proteínas de Protozoários/genética , Proteínas de Transporte Vesicular/metabolismo , Autofagia/genética , Células HeLa , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Neuroacantocitose , Fenótipo , Proteínas de Protozoários/metabolismo , Proteínas de Transporte Vesicular/genética
18.
Autophagy ; 11(6): 891-905, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25998554

RESUMO

The Atg1 complex, which contains 5 major subunits: Atg1, Atg13, Atg17, Atg29, and Atg31, regulates the induction of autophagy and autophagosome formation. To gain a better understanding of the overall architecture and assembly mechanism of this essential autophagy regulatory complex, we have reconstituted a core assembly of the Saccharomyces cerevisiae Atg1 complex composed of full-length Atg17, Atg29, and Atg31, along with the C-terminal domains of Atg1 (Atg1[CTD]) and Atg13 (Atg13[CTD]). Using chemical-crosslinking coupled with mass spectrometry (CXMS) analysis we systematically mapped the intersubunit interaction interfaces within this complex. Our data revealed that the intrinsically unstructured C-terminal domain of Atg29 interacts directly with Atg17, whereas Atg17 interacts with Atg13 in 2 distinct intrinsically unstructured regions, including a previously unknown motif that encompasses several putative phosphorylation sites. The Atg1[CTD] crosslinks exclusively to the Atg13[CTD] and does not appear to make direct contact with the Atg17-Atg31-Atg29 scaffold. Finally, single-particle electron microscopy analysis revealed that both the Atg13[CTD] and Atg1[CTD] localize to the tip regions of Atg17-Atg31-Atg29 and do not alter the distinct curvature of this scaffolding subcomplex. This work provides a comprehensive understanding of the subunit interactions in the fully assembled Atg1 core complex, and uncovers the potential role of intrinsically disordered regions in regulating complex integrity.


Assuntos
Autofagia/fisiologia , Proteínas Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Relacionadas à Autofagia , Proteínas de Transporte/metabolismo , Fagossomos/metabolismo
19.
Autophagy ; 11(5): 740-7, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25955014

RESUMO

BECN1/Beclin 1 is regarded as a critical component in the class III phosphatidylinositol 3-kinase (PtdIns3K) complex to trigger autophagy in mammalian cells. Despite its significant role in a number of cellular and physiological processes, the exact function of BECN1 in autophagy remains controversial. Here we created a BECN1 knockout human cell line using the TALEN technique. Surprisingly, the complete loss of BECN1 had little effect on LC3 (MAP1LC3B/LC3B) lipidation, and LC3B puncta resembling autophagosomes by fluorescence microscopy were still evident albeit significantly smaller than those in the wild-type cells. Electron microscopy (EM) analysis revealed that BECN1 deficiency led to malformed autophagosome-like structures containing multiple layers of membranes under amino acid starvation. We further confirmed that the PtdIns3K complex activity and autophagy flux were disrupted in BECN1(-/-) cells. Our results demonstrate the essential role of BECN1 in the functional formation of autophagosomes, but not in LC3B lipidation.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Autofagia , Lipídeos/química , Proteínas de Membrana/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Fagossomos/metabolismo , Proteínas Reguladoras de Apoptose/deficiência , Sequência de Bases , Proteína Beclina-1 , Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Células HeLa , Humanos , Proteínas de Membrana/deficiência , Dados de Sequência Molecular , Fagossomos/ultraestrutura
20.
Autophagy ; 11(6): 867-80, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25836756

RESUMO

Macroautophagy is a major intracellular degradation process recognized as playing a central role in cell survival and longevity. This multistep process is extensively regulated at several levels, including post-translationally through the action of conserved longevity factors such as the nutrient sensor TOR. More recently, transcriptional regulation of autophagy genes has emerged as an important mechanism for ensuring the somatic maintenance and homeostasis necessary for a long life span. Autophagy is increased in many long-lived model organisms and contributes significantly to their longevity. In turn, conserved transcription factors, particularly the helix-loop-helix transcription factor TFEB and the forkhead transcription factor FOXO, control the expression of many autophagy-related genes and are important for life-span extension. In this review, we discuss recent progress in understanding the contribution of these transcription factors to macroautophagy regulation in the context of aging. We also review current research on epigenetic changes, such as histone modification by the deacetylase SIRT1, that influence autophagy-related gene expression and additionally affect aging. Understanding the molecular regulation of macroautophagy in relation to aging may offer new avenues for the treatment of age-related diseases.


Assuntos
Envelhecimento/fisiologia , Autofagia/fisiologia , Sobrevivência Celular/fisiologia , Epigênese Genética/fisiologia , Fatores de Transcrição/genética , Animais , Apoptose/genética , Sobrevivência Celular/genética , Humanos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa