Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
JACC Basic Transl Sci ; 8(2): 155-170, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36908661

RESUMO

Phenotypic switching of vascular smooth muscle cells is a central process in abdominal aortic aneurysm (AAA) pathology. We found that knockdown TCF7L1 (transcription factor 7-like 1), a member of the TCF/LEF (T cell factor/lymphoid enhancer factor) family of transcription factors, inhibits vascular smooth muscle cell differentiation. This study hints at potential interventions to maintain a normal, differentiated smooth muscle cell state, thereby eliminating the pathogenesis of AAA. In addition, our study provides insights into the potential use of TCF7L1 as a biomarker for AAA.

2.
JACC Basic Transl Sci ; 7(7): 681-693, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35958697

RESUMO

Moderate exercise has well-founded benefits in cardiovascular health. However, increasing, yet controversial, evidence suggests that extremely trained athletes may not be protected from cardiovascular events as much as moderately trained individuals. In our rodent model, intensive but not moderate training promoted aorta and carotid stiffening and elastic lamina ruptures, tunica media thickening of intramyocardial arteries, and an imbalance between vasoconstrictor and relaxation agents. An up-regulation of angiotensin-converter enzyme, miR-212, miR-132, and miR-146b might account for this deleterious remodeling. Most changes remained after a 4-week detraining. In conclusion, our results suggest that intensive training blunts the benefits of moderate exercise.

3.
Biochem Biophys Rep ; 29: 101183, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35005255

RESUMO

Cardiovascular disease is the leading cause of death worldwide, with multipotent vascular stem cells (MVSC) implicated in contributing to diseased vessels. MVSC are mechanosensitive cells which align perpendicular to cyclic uniaxial tensile strain. Within the blood vessel wall, collagen fibers constrain cells so that they are forced to align circumferentially, in the primary direction of tensile strain. In these experiments, MVSC were seeded onto the medial layer of decellularized porcine carotid arteries, then exposed to 10%, 1 Hz cyclic tensile strain for 10 days with the collagen fiber direction either parallel or perpendicular to the direction of strain. Cells aligned with the direction of the collagen fibers regardless of the orientation to strain. Cells aligned with the direction of strain showed an increased number of proliferative Ki67 positive cells, while those strained perpendicular to the direction of cell alignment showed no change in cell proliferation. A bioreactor system was designed to simulate the indentation of a single, wire stent strut. After 10 days of cyclic loading to 10% strain, MVSC showed regions of densely packed, highly proliferative cells. Therefore, MVSC may play a significant role in in-stent restenosis, and this proliferative response could potentially be controlled by controlling MVSC orientation relative to applied strain.

4.
JID Innov ; 2(6): 100141, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36262667

RESUMO

The formation of mature vasculature through angiogenesis is essential for adequate wound healing, such that blood-borne cells, nutrients, and oxygen can be delivered to the remodeling skin area. Neovessel maturation is highly dependent on the coordinated functions of vascular endothelial cells and perivascular cells, namely pericytes (PCs). However, the underlying mechanism for vascular maturation has not been completely elucidated, and its role in wound healing remains unclear. In this study, we investigated the role of Ninjurin-1 (Ninj1), a new molecule mediating vascular maturation, in wound healing using an inducible PC-specific Ninj1 deletion mouse model. Ninj1 expression increased temporarily in NG2-positive PCs in response to skin injury. When tamoxifen treatment induced a decreased Ninj1 expression in PCs, the neovessels in the regenerating wound margins were structurally and functionally immature, but the total number of microvessels was unaltered. This phenotypic change is associated with a reduction in PC-associated microvessels. Wound healing was significantly delayed in the NG2-specific Ninj1 deletion mouse model. Finally, we showed that Ninj1 is a crucial molecule that mediates vascular maturation in injured skin tissue through the interaction of vascular endothelial cells and PCs, thereby inducing adequate and prompt wound healing.

5.
Artigo em Inglês | MEDLINE | ID: mdl-35300074

RESUMO

Background: Basic fibroblast growth factor (bFGF)-mediated vascular smooth muscle cell (VSMC) proliferation and migration play an important role in vascular injury-induced neointima formation and subsequent vascular restenosis, a major event that hinders the long-term success of angioplasty. The function of ß3-adrenergic receptors (ß3-ARs) in vascular injury-induced neointima formation has not yet been defined. Objectives: Our current study explored the possible role of ß3-ARs in vascular injury-induced neointima formation by testing its effects on bFGF-induced VSMC migration and proliferation. Methods: ß3-AR expression in rat carotid arteries was examined at 14 days following a balloon catheter-induced injury. The effects of ß3-AR activation on bFGF-induced rat aortic smooth muscle cell proliferation, migration, and signaling transduction (including extracellular-signal-regulated kinase/mitogen activated protein kinase, ERK/MAPK and Protein kinase B, AKT) were tested. Results: We found that vascular injury induced upregulation of ß3-ARs in neointima. Pretreatment of VSMCs with a selective ß3-AR agonist, CL316,243 significantly potentiated bFGF-induced cell migration and proliferation, and ERK and AKT phosphorylation. Our results also revealed that suppressing phosphorylation of ERK and AKT blocked bFGF-induced cell migration and that inhibiting AKT phosphorylation reduced bFGF-mediated cell proliferation. Conclusion: Our results suggest that activation of ß3-ARs potentiates bFGF-mediated effects on VSMCs by enhancing bFGF-mediated ERK and AKT phosphorylation and that ß3-ARs may play a role in vascular injury-induced neointima formation.

6.
Matrix Biol Plus ; 14: 100106, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35392182

RESUMO

The vascular endothelium is the interface between circulating blood and end organs and thus has a critical role in preserving organ function. The endothelium is lined by a glycan-rich glycocalyx that uniquely contributes to endothelial function through its regulation of leukocyte and platelet interactions with the vessel wall, vascular permeability, coagulation, and vasoreactivity. Degradation of the endothelial glycocalyx can thus promote vascular dysfunction, inflammation propagation, and organ injury. The endothelial glycocalyx and its role in vascular pathophysiology has gained increasing attention over the last decade. While studies characterizing vascular glycocalyx injury and its downstream consequences in a host of adult human diseases and in animal models has burgeoned, studies evaluating glycocalyx damage in pediatric diseases are relatively few. As children have unique physiology that differs from adults, significant knowledge gaps remain in our understanding of the causes and effects of endothelial glycocalyx disintegrity in pediatric critical illness. In this narrative literature overview, we offer a unique perspective on the role of the endothelial glycocalyx in pediatric critical illness, drawing from adult and preclinical data in addition to pediatric clinical experience to elucidate how marked derangement of the endothelial surface layer may contribute to aberrant vascular biology in children. By calling attention to this nascent field, we hope to increase research efforts to address important knowledge gaps in pediatric vascular biology that may inform the development of novel therapeutic strategies.

7.
JACC Basic Transl Sci ; 7(2): 164-180, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35257044

RESUMO

The low-density lipoprotein receptor (LDLR) gene family includes LDLR, very LDLR, and LDL receptor-related proteins (LRPs) such as LRP1, LRP1b (aka LRP-DIT), LRP2 (aka megalin), LRP4, and LRP5/6, and LRP8 (aka ApoER2). LDLR family members constitute a class of closely related multifunctional, transmembrane receptors, with diverse functions, from embryonic development to cancer, lipid metabolism, and cardiovascular homeostasis. While LDLR family members have been studied extensively in the systemic circulation in the context of atherosclerosis, their roles in pulmonary arterial hypertension (PAH) are understudied and largely unknown. Endothelial dysfunction, tissue infiltration of monocytes, and proliferation of pulmonary artery smooth muscle cells are hallmarks of PAH, leading to vascular remodeling, obliteration, increased pulmonary vascular resistance, heart failure, and death. LDLR family members are entangled with the aforementioned detrimental processes by controlling many pathways that are dysregulated in PAH; these include lipid metabolism and oxidation, but also platelet-derived growth factor, transforming growth factor ß1, Wnt, apolipoprotein E, bone morpohogenetic proteins, and peroxisome proliferator-activated receptor gamma. In this paper, we discuss the current knowledge on LDLR family members in PAH. We also review mechanisms and drugs discovered in biological contexts and diseases other than PAH that are likely very relevant in the hypertensive pulmonary vasculature and the future care of patients with PAH or other chronic, progressive, debilitating cardiovascular diseases.

8.
JACC Basic Transl Sci ; 6(9-10): 719-730, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34754985

RESUMO

Thoracic aortic aneurysms (TAA) pathogenesis and progression include many mechanisms. The authors investigated the role of autophagy, oxidative stress, and endothelial dysfunction in 36 TAA patients and 23 control patients. Univariable and multivariable analyses were performed. TAA patients displayed higher oxidative stress and endothelial dysfunction then control patients. Autophagy in the TAA group was reduced. The association of oxidative stress and autophagy with aortic disease supports the role of these processes in TAA. The authors demonstrate a putative role of Nox2 and autophagy dysregulation in human TAA. These findings could pinpoint novel treatment targets to prevent or limit TAA progression.

9.
JACC Basic Transl Sci ; 6(11): 900-917, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34869956

RESUMO

The process of restenosis is based on the interplay of various mechanical and biological processes triggered by angioplasty-induced vascular trauma. Early arterial recoil, negative vascular remodeling, and neointimal formation therefore limit the long-term patency of interventional recanalization procedures. The most serious of these processes is neointimal hyperplasia, which can be traced back to 4 main mechanisms: endothelial damage and activation; monocyte accumulation in the subintimal space; fibroblast migration; and the transformation of vascular smooth muscle cells. A wide variety of animal models exists to investigate the underlying pathophysiology. Although mouse models, with their ease of genetic manipulation, enable cell- and molecular-focused fundamental research, and rats provide the opportunity to use stent and balloon models with high throughput, both rodents lack a lipid metabolism comparable to humans. Rabbits instead build a bridge to close the gap between basic and clinical research due to their human-like lipid metabolism, as well as their size being accessible for clinical angioplasty procedures. Every different combination of animal, dietary, and injury model has various advantages and disadvantages, and the decision for a proper model requires awareness of species-specific biological properties reaching from vessel morphology to distinct cellular and molecular features.

10.
JACC Basic Transl Sci ; 6(4): 388-396, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33997524

RESUMO

Coronary artery bypass graft (CABG) is the gold standard for coronary surgical revascularization. Retrospective, prospective, and meta-analysis studies looking into long-term outcomes of using different conduits have pointed to the superiority of arterial grafts over veins and have placed the internal mammary artery as the standard conduit of choice for CABG. The superiority of the internal mammary artery over other conduits could be attributable to its intrinsic characteristics; however, little is known regarding the features that render some conduits atherosclerosis-prone and others atherosclerosis-resistant. Here, an overview is provided of the available data on the most commonly used conduits in CABG (internal mammary artery, saphenous vein, radial artery, gastroepiploic artery), highlighting the differences in their cellular biology, mechanical, biochemical, and vasoconstrictive properties. This information should help in furthering our understanding of the clinical outcomes observed for each of these conduits.

11.
J Adv Res ; 27: 115-125, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33318871

RESUMO

INTRODUCTION: Mounting evidences demonstrated the deficiency of hydrogen sulfide (H2S) facilitated the progression of cardiovascular diseases. However, the exact effects of H2S on vascular remodeling are not consistent. OBJECTIVES: This study aimed to investigate the beneficial role of endogenous H2S on vascular remodeling. METHODS: CSE inhibitor, DL-propargylglycine (PPG) was used to treat mice and vascular smooth muscle cells (VSMCs). Sodium hydrosulfide (NaHS) was given to provide hydrogen sulfide. Vascular tension, H&E staining, masson trichrome staining, western blot and CCK8 were used to determine the vascular remodeling, expressions of inflammatory molecules and proliferation of VSMCs. RESULTS: The deficiency of endogenous H2S generated vascular remodeling with aggravated active and passive contraction, thicken aortic walls, collagen deposition, increased phosphorylation of STAT3, decreased production of PPARδ and SOCS3 in aortas, which were reversed by NaHS. PPG inhibited expression of PPARδ and SOCS3, stimulated the phosphorylation of STAT3, increased inflammatory molecules production and proliferation rate of VSMCs which could all be corrected by NaHS supply. PPARδ agonist GW501516 offered protections similar to NaHS in PPG treated VSMCs. Aggravated active and passive contraction in PPG mice aortas, upregulated p-STAT3 and inflammatory molecules, downregulated SOCS3 and phenotype transformation in PPG treated VSMCs could be corrected by PPARδ agonist GW501516 treatment. On the contrary, PPARδ antagonist GSK0660 exhibited opposite effects on vascular contraction in aortas, expressions of p-STAT3 and SOCS3 in VSMCs compared with GW501516. CONCLUSION: In a word, endogenous H2S protected against vascular remodeling through preserving PPARδ/SOCS3 anti-inflammatory signaling pathway. Deficiency of endogenous H2S should be considered as a risk factor for VSMCs dysfunction.

12.
Biochem Biophys Rep ; 27: 101091, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34381883

RESUMO

Peroxisome proliferator-activated receptor (PPAR) α is widely expressed in the vasculature and has pleiotropic and lipid-lowering independent effects, but its role in the growth and function of vascular smooth muscle cells (VSMCs) during vascular pathophysiology is still unclear. Herein, VSMC-specific PPARα-deficient mice (Ppara ΔSMC) were generated by Cre-LoxP site-specific recombinase technology and VSMCs were isolated from mice aorta. PPARα deficiency attenuated VSMC apoptosis induced by angiotensin (Ang) II and hydrogen peroxide, and increased the migration of Ang II-challenged cells.

13.
Int J Cardiol Hypertens ; 7: 100050, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33330845

RESUMO

BACKGROUND: The band 9p21.3 contains an established genomic risk zone for cardiovascular disease (CVD). Since the initial 2007 Wellcome Trust Case Control Consortium study (WTCCC), the increased CVD risk associated with 9p21.3 has been confirmed by multiple studies in different continents. However, many years later there was still no confirmed report of a corresponding association of 9p21.3 with hypertension, a major CV risk factor, nor with blood pressure (BP). THEORY: In this contribution, we review the bipartite haplotype structure of the 9p21.3 risk locus: one block is devoid of protein-coding genes but contains the lead CVD risk SNPs, while the other block contains the first exon and regulatory DNA of the gene for the cell cycle inhibitor p15. We consider how findings from molecular biology offer possibilities of an involvement of p15 in hypertension etiology, with expression of the p15 gene modulated by genetic variation from within the 9p21.3 risk locus. RESULTS: We present original results from a Colombian study revealing moderate but persistent association signals for BP and hypertension within the classic 9p21.3 CVD risk locus. These SNPs are mostly confined to a 'hypertension island' that spans less than 60 kb and coincides with the p15 haplotype block. We find confirmation in data originating from much larger, recent European BP studies, albeit with opposite effect directions. CONCLUSION: Although more work will be needed to elucidate possible mechanisms, previous findings and new data prompt reconsidering the question of how variation in 9p21.3 might influence hypertension components of cardiovascular risk.

14.
JACC Basic Transl Sci ; 5(4): 398-412, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32368697

RESUMO

Cardiovascular (CV) disease remains an important cause of morbidity and mortality for patients with chronic kidney disease (CKD). Although clustering of traditional risk factors with CKD is well recognized, kidney-specific mechanisms are believed to drive the disproportionate burden of CV disease. One perturbation that is frequently observed at high rates in patients with CKD is vascular calcification, which may be a central mediator for an array of CV sequelae. This review summarizes the pathophysiological bases of intimal and medial vascular calcification in CKD, current strategies for diagnosis and management, and posits vascular calcification as a risk marker and therapeutic target.

15.
Biochem Biophys Rep ; 16: 79-87, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30377672

RESUMO

We investigated whether mesenchymal stem cell (MSC)-based treatment could inhibit neointimal hyperplasia in a rat model of carotid arterial injury and explored potential mechanisms underlying the positive effects of MSC therapy on vascular remodeling/repair. Sprague-Dawley rats underwent balloon injury to their right carotid arteries. After 2 days, we administered cultured MSCs from bone marrow of GFP-transgenic rats (0.8 × 106 cells, n = 10) or vehicle (controls, n = 10) to adventitial sites of the injured arteries. As an additional control, some rats received a higher dose of MSCs by systemic infusion (3 × 106 cells, tail vein; n = 4). Local vascular MSC administration significantly prevented neointimal hyperplasia (intima/media ratio) and reduced the percentage of Ki67 + proliferating cells in arterial walls by 14 days after treatment, despite little evidence of long-term MSC engraftment. Notably, systemic MSC infusion did not alter neointimal formation. By immunohistochemistry, compared with neointimal cells of controls, cells in MSC-treated arteries expressed reduced levels of embryonic myosin heavy chain and RM-4, an inflammatory cell marker. In the presence of platelet-derived growth factor (PDGF-BB), conditioned medium from MSCs increased p27 protein levels and significantly attenuated VSMC proliferation in culture. Furthermore, MSC-conditioned medium suppressed the expression of inflammatory cytokines and RM-4 in PDGF-BB-treated VSMCs. Thus, perivascular administration of MSCs may improve restenosis after vascular injury through paracrine effects that modulate VSMC inflammatory phenotype.

16.
JACC Basic Transl Sci ; 3(5): 604-624, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30456333

RESUMO

Two major issues are involved in clinical atherosclerosis treatment. First, there are no significant clinical markers for early diagnosis of atherosclerosis. Second, the plaque will not regress once it initiates even if the risk factors are removed. In this paper, the research shows that the hypermethylation level of the microRNA 145 (miR-145) promoter is related to a DNMT1 and TET2 dynamic imbalance. The reduction of miR-145 causes NLRP3 (nucleotide-binding oligomerization domain-like receptor protein 3) inflammasome activation through CD137/NFATc1 signaling. These findings could be a potential target for plaque regression in the future.

17.
JACC Basic Transl Sci ; 1(6): 494-509, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30167534

RESUMO

Tumor necrosis factor-stimulated gene-6 (TSG-6), an anti-inflammatory protein, was shown to be localized in the neointima of injury-induced rat arteries. However, the modulatory effect of TSG-6 on atherogenesis has not yet been reported. We aimed to evaluate the atheroprotective effects of TSG-6 on human endothelial cells (HECs), human monocyte-derived macrophages (HMDMs), human aortic smooth muscle cells (HASMCs) in vitro, and aortic lesions in apolipoprotein E-deficient mice, along with expression levels of TSG-6 in coronary lesions and plasma from patients with coronary artery disease (CAD). TSG-6 was abundantly expressed in HECs, HMDMs, and HASMCs in vitro. TSG-6 significantly suppressed cell proliferation and lipopolysaccharide-induced up-regulation of monocyte chemotactic protein-1, intercellular adhesion molecule-1, and vascular adhesion molecule-1 in HECs. TSG-6 significantly suppressed inflammatory M1 phenotype and suppressed oxidized low-density lipoprotein-induced foam cell formation associated with down-regulation of CD36 and acyl-CoA:cholesterol acyltransferase-1 in HMDMs. In HASMCs, TSG-6 significantly suppressed migration and proliferation, but increased collagen-1 and -3 expressions. Four-week infusion of TSG-6 into apolipoprotein E-deficient mice significantly retarded the development of aortic atherosclerotic lesions with decreased vascular inflammation, monocyte/macrophage, and SMC contents and increased collagen fibers. In addition, it decreased peritoneal M1 macrophages with down-regulation of inflammatory molecules and lowered plasma total cholesterol levels. In patients with CAD, plasma TSG-6 levels were significantly increased, and TSG-6 was highly expressed in the fibrous cap within coronary atherosclerotic plaques. These results suggest that TSG-6 contributes to the prevention and stability of atherosclerotic plaques. Thus, TSG-6 may serve as a novel therapeutic target for CAD.

18.
Organogenesis ; 11(1): 1-15, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25915734

RESUMO

Tissue development is orchestrated by the coordinated activities of both chemical and physical regulators. While much attention has been given to the role that chemical regulators play in driving development, researchers have recently begun to elucidate the important role that the mechanical properties of the extracellular environment play. For instance, the stiffness of the extracellular environment has a role in orienting cell division, maintaining tissue boundaries, directing cell migration, and driving differentiation. In addition, extracellular matrix stiffness is important for maintaining normal tissue homeostasis, and when matrix mechanics become imbalanced, disease progression may ensue. In this article, we will review the important role that matrix stiffness plays in dictating cell behavior during development, tissue homeostasis, and disease progression.


Assuntos
Progressão da Doença , Matriz Extracelular/metabolismo , Homeostase , Animais , Diferenciação Celular , Movimento Celular , Proliferação de Células , Citoesqueleto/metabolismo , Elasticidade , Fibrose/patologia , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Neoplasias/patologia , Transdução de Sinais , Estresse Mecânico
19.
Channels (Austin) ; 8(5): 402-13, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25483583

RESUMO

Smooth muscle myosin light chain kinase (MLCK) plays a crucial role in artery contraction, which regulates blood pressure and blood flow distribution. In addition to this role, MLCK contributes to Ca(2+) flux regulation in vascular smooth muscle (VSM) and in non-muscle cells, where cytoskeleton has been suggested to help Ca(2+) channels trafficking. This conclusion is based on the use of pharmacological inhibitors of MLCK and molecular and cellular techniques developed to down-regulate the enzyme. Dissimilarities have been observed between cells and whole tissues, as well as between large conductance and small resistance arteries. A differential expression in MLCK and ion channels (either voltage-dependent Ca(2+) channels or non-selective cationic channels) could account for these observations, and is in line with the functional properties of the arteries. A potential involvement of MLCK in the pathways modulating Ca(2+) entry in VSM is described in the present review.


Assuntos
Canais de Cálcio/metabolismo , Músculo Liso/metabolismo , Quinase de Cadeia Leve de Miosina/metabolismo , Animais , Humanos , Músculo Liso/enzimologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa