Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 391
Filtrar
1.
Protein Expr Purif ; 219: 106462, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38556142

RESUMO

The bacterium Burkholderia pseudomallei is the cause of melioidosis infectious disease. In this bacterium, the BLF1 protein wide inhibits the synthesis of proteins in human cells. This disease is reported to cause a death rate of 40% in some parts of the world. Currently, no effective vaccine is available against this bacterial infection. In this study, therefore, a Nano vaccine was synthesized based on the trimethyl chitosan (TMC) polymer containing the BLF1 recombinant protein, and its immunogenicity and protection in Syrian mice were evaluated by oral and subcutaneous injections. The BLF1 recombinant protein expression was induced in Escherichia coli Bl21 (DE3) and purified by the affinity chromatography technique. Recombinant protein-containing nanoparticles (NPs) were then synthesized by the ionotropic gelation method. After oral and subcutaneous injections, antibody titration was assessed by the indirect ELISA assay. Finally, murine groups were challenged using the BLF1 toxin. The results indicated that the immune system showed more antibody titration in subcutaneous injection than in the oral form. However, the results were reversed in the challenge results, and the survival rate was more significant in the oral injection.


Assuntos
Quitosana , Nanopartículas , Proteínas Recombinantes , Animais , Quitosana/química , Camundongos , Nanopartículas/química , Administração Oral , Injeções Subcutâneas , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/administração & dosagem , Escherichia coli/genética , Melioidose/prevenção & controle , Melioidose/imunologia , Vacinas Bacterianas/imunologia , Vacinas Bacterianas/administração & dosagem , Vacinas Bacterianas/química , Feminino , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/administração & dosagem , Anticorpos Antibacterianos/imunologia
2.
BMC Bioinformatics ; 24(1): 63, 2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36823524

RESUMO

BACKGROUND: Non-typhoidal Salmonella (NTS) is one of the important bacteria that cause foodborne diseases and invasive infections in children and elderly people. Since NTS infection is difficult to control due to the emergence of antibiotic-resistant species and its adverse effect on immune response, the development of a vaccine against NTS would be necessary. This study aimed to develop a multi-epitope vaccine against the most prevalent serovars of NTS (Salmonella Typhimurium, Salmonella Enteritidis) using an immunoinformatics approach and targeting OmpA, OmpD, and enterotoxin (Stn). RESULTS: Initially, the B cell and T cell epitopes were predicted. Then, epitopes and suitable adjuvant were assembled by molecular linkers to construct a multi-epitope vaccine. The computational tools predicted the tertiary structure, refined the tertiary structure and validated the final vaccine construct. The effectiveness of the vaccine was evaluated via molecular docking, molecular dynamics simulation, and in silico immune simulation. The vaccine model had good binding affinity and stability with MHC-I, MHC-II, and toll-like receptors (TLR-1, 2, 4) as well as activation of T cells, IgM, IgG, IFN-γ and IL-2 responses. Furthermore, after codon optimization of the vaccine sequence, this sequence was cloned in E. coli plasmid vector pET-30a (+) within restriction sites of HindIII and BamHI. CONCLUSIONS: This study, for the first time, introduced a multi-epitope vaccine based on OmpA, OmpD and enterotoxin (Stn) of NTS that could stimulate T and B cell immune responses and produced in the prokaryotic system. This vaccine was validated in-silico phase which is an essential study to reduce challenges before in vitro and in vivo studies.


Assuntos
Vacinas Bacterianas , Enterotoxinas , Infecções por Salmonella , Humanos , Vacinas Bacterianas/química , Vacinas Bacterianas/imunologia , Biologia Computacional , Epitopos de Linfócito B , Epitopos de Linfócito T/química , Escherichia coli , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Infecções por Salmonella/prevenção & controle , Vacinas de Subunidades Antigênicas/química , Vacinas de Subunidades Antigênicas/imunologia
3.
Angew Chem Int Ed Engl ; 61(11): e202115342, 2022 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-34935243

RESUMO

Streptococcus pyogenes is a primary infective agent that causes approximately 700 million human infections each year, resulting in more than 500 000 deaths. Carbohydrate-based vaccines are proven to be one of the most promising subunit vaccine candidates, as the bacterial glycan pattern(s) are different from mammalian cells and show increased pathogen serotype conservancy than the protein components. In this Review we highlight reverse vaccinology for use in the development of subunit vaccines against S. pyogenes, and report reproducible methods of carbohydrate antigen production, in addition to the structure-immunogenicity correlation between group A carbohydrate epitopes and alternative vaccine antigen carrier systems. We also report recent advances used to overcome hurdles in carbohydrate-based vaccine development.


Assuntos
Vacinas Bacterianas/imunologia , Polissacarídeos Bacterianos/imunologia , Streptococcus pyogenes/imunologia , Anticorpos Antibacterianos/imunologia , Vacinas Bacterianas/síntese química , Vacinas Bacterianas/química , Polissacarídeos Bacterianos/síntese química , Polissacarídeos Bacterianos/química
4.
J Bacteriol ; 203(15): e0008221, 2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-33972353

RESUMO

Treponema pallidum, an obligate human pathogen, has an outer membrane (OM) whose physical properties, ultrastructure, and composition differ markedly from those of phylogenetically distant Gram-negative bacteria. We developed structural models for the outer membrane protein (OMP) repertoire (OMPeome) of T. pallidum Nichols using solved Gram-negative structures, computational tools, and small-angle X-ray scattering (SAXS) of selected recombinant periplasmic domains. The T. pallidum "OMPeome" harbors two "stand-alone" proteins (BamA and LptD) involved in OM biogenesis and four paralogous families involved in the influx/efflux of small molecules: 8-stranded ß-barrels, long-chain-fatty-acid transporters (FadLs), OM factors (OMFs) for efflux pumps, and T. pallidum repeat proteins (Tprs). BamA (TP0326), the central component of a ß-barrel assembly machine (BAM)/translocation and assembly module (TAM) hybrid, possesses a highly flexible polypeptide-transport-associated (POTRA) 1-5 arm predicted to interact with TamB (TP0325). TP0515, an LptD ortholog, contains a novel, unstructured C-terminal domain that models inside the ß-barrel. T. pallidum has four 8-stranded ß-barrels, each containing positively charged extracellular loops that could contribute to pathogenesis. Three of five FadL-like orthologs have a novel α-helical, presumptively periplasmic C-terminal extension. SAXS and structural modeling further supported the bipartite membrane topology and tridomain architecture of full-length members of the Tpr family. T. pallidum's two efflux pumps presumably extrude noxious small molecules via four coexpressed OMFs with variably charged tunnels. For BamA, LptD, and OMFs, we modeled the molecular machines that deliver their substrates into the OM or external milieu. The spirochete's extended families of OM transporters collectively confer a broad capacity for nutrient uptake. The models also furnish a structural road map for vaccine development. IMPORTANCE The unusual outer membrane (OM) of T. pallidum, the syphilis spirochete, is the ultrastructural basis for its well-recognized capacity for invasiveness, immune evasion, and persistence. In recent years, we have made considerable progress in identifying T. pallidum's repertoire of OMPs. Here, we developed three-dimensional (3D) models for the T. pallidum Nichols OMPeome using structural modeling, bioinformatics, and solution scattering. The OM contains three families of OMP transporters, an OMP family involved in the extrusion of noxious molecules, and two "stand-alone" proteins involved in OM biogenesis. This work represents a major advance toward elucidating host-pathogen interactions during syphilis; understanding how T. pallidum, an extreme auxotroph, obtains a wide array of biomolecules from its obligate human host; and developing a vaccine with global efficacy.


Assuntos
Membrana Externa Bacteriana/química , Vacinas Bacterianas/química , Sífilis/prevenção & controle , Treponema pallidum/imunologia , Membrana Externa Bacteriana/imunologia , Vacinas Bacterianas/genética , Vacinas Bacterianas/imunologia , Humanos , Modelos Estruturais , Conformação Proteica , Sífilis/microbiologia , Treponema pallidum/química , Treponema pallidum/genética , Difração de Raios X
5.
Curr Top Microbiol Immunol ; 428: 129-163, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-30046985

RESUMO

Glycosylation is an important post-translational modification that is required for structural and stability purposes and functional roles such as signalling, attachment and shielding. Many human pathogens such as bacteria display an array of carbohydrates on their surface that are non-self to the host; others such as viruses highjack the host-cell machinery and present self-carbohydrates sometimes arranged in a non-self more immunogenic manner. In combination with carrier proteins, these glycan structures can be highly immunogenic. During natural infection, glycan-binding antibodies are often elicited that correlate with long-lasting protection. A great amount of research has been invested in carbohydrate vaccine design to elicit such an immune response, which has led to the development of vaccines against the bacterial pathogens Haemophilus influenzae type b, Streptococcus pneumonia and Neisseria meningitidis. Other vaccines, e.g. against HIV-1, are still in development, but promising progress has been made with the isolation of broadly neutralizing glycan-binding antibodies and the engineering of stable trimeric envelope glycoproteins. Carbohydrate vaccines against other pathogens such as viruses (Dengue, Hepatitis C), parasites (Plasmodium) and fungi (Candida) are at different stages of development. This chapter will discuss the challenges in inducing cross-reactive carbohydrate-targeting antibodies and progress towards carbohydrate vaccines.


Assuntos
Polissacarídeos/imunologia , Vacinas/química , Vacinas/imunologia , Vacinologia , Virulência/imunologia , Vacinas contra a AIDS/química , Vacinas contra a AIDS/imunologia , Anticorpos/imunologia , Vacinas Bacterianas/química , Vacinas Bacterianas/imunologia , Glicosilação , Humanos
6.
Nanomedicine ; 35: 102398, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33901646

RESUMO

Bacterial membrane vesicles (MVs) are particles secreted by bacteria with diameter of 20-400 nm. The pathogen-associated molecular patterns (PAMPs) present on the surface of MVs are capable of activating human immune system, leading to non-specific immune response and specific immune response. Due to the immunostimulatory properties and proteoliposome nanostructures, MVs have been increasingly explored as vaccines or delivery systems for the prevention and treatment of bacterial infections. Herein, the recent progresses of MVs for antibacterial applications are reviewed to provide an overview of MVs vaccines and MVs-related delivery systems. In addition, the safety issues of bacterial MVs are discussed to demonstrate their potential for clinical translation. In the end of this review, the challenges of bacterial MVs as vaccines and delivery systems for clinical applications are highlighted with the purpose of predicting future research directions in this field.


Assuntos
Bactérias , Infecções Bacterianas , Proteínas de Bactérias , Vacinas Bacterianas , Membrana Celular , Nanoestruturas , Bactérias/química , Bactérias/imunologia , Infecções Bacterianas/imunologia , Infecções Bacterianas/prevenção & controle , Proteínas de Bactérias/química , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/uso terapêutico , Vacinas Bacterianas/química , Vacinas Bacterianas/imunologia , Vacinas Bacterianas/uso terapêutico , Membrana Celular/química , Membrana Celular/imunologia , Humanos , Lipossomos , Nanoestruturas/química , Nanoestruturas/uso terapêutico
7.
Genomics ; 112(5): 3473-3483, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32562830

RESUMO

Helicobacter pylori is a Gram-negative spiral-shaped bacterium that infects half of the human population worldwide and causes chronic inflammation. In the present study, we used the art of computational biology for therapeutic drug targets identification and a multi-epitope vaccine against multi-strains of H. pylori. For drug target identification, we used different tools and softwares to identify human non-homologous but pathogen essential proteins, with virulent properties and involved in unique metabolic pathways of H. pylori. For this purpose, the core proteome of 84 strains of H. pylori was retrieved from EDGAR 2.3 database. There were 59,808 proteins sequences in these strains. Duplicates and paralogous protein sequence removal was followed by human non-homologous protein miningPathogen essential and virulent proteins were subjected to pathway analysis Subcellular localization of the virulent proteins was predicted and druggability was also checked, leading to 30 druggable targets based on their similarity with the approved drug targets in Drugbank. For immunoinformatics analysis, we selected two outer membrane proteins (HPAKL86_RS06305 and HPSNT_RS00950) and subjected to determined immunogenic B and T-Cell epitopes. The B and T-Cell overlapped epitopes were selected to design 9 different vaccine constructs by using linkers and adjuvants. Least allergenic and most antigenic construct (C-8) was selected as a promiscuous vaccine to elicit host immune response. Cloning and in silico expression of the constructed vaccine (C-8) was done to produce a clone having the desired (gene) vaccine construct. In conclusion, the prioritized therapeutic targets for 84 strains of H.pylori will be useful for future therapy design. Vaccine design may also prove useful in the quest for targeting multi-strains of H. pylori in patients.


Assuntos
Vacinas Bacterianas/imunologia , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito T/imunologia , Helicobacter pylori/imunologia , Proteoma/imunologia , Proteínas de Bactérias/química , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/metabolismo , Vacinas Bacterianas/química , Mineração de Dados , Epitopos de Linfócito B/química , Epitopos de Linfócito T/química , Genômica , Helicobacter pylori/efeitos dos fármacos , Helicobacter pylori/metabolismo , Helicobacter pylori/patogenicidade , Redes e Vias Metabólicas , Proteoma/química , Proteoma/metabolismo , Virulência
8.
Anaerobe ; 72: 102465, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34662696

RESUMO

Herd vaccination is an important preventive measure against enterotoxemia in ruminants. Vaccination in goats should be performed every four months, and recent studies have shown that immunity in cattle lasts for less than one year. One of the mechanisms for increasing the duration of the immune response is to use purified toxoids as immunogens. The aim of the present study was to evaluate the humoral response in cattle and goats after vaccination with purified and semi-purified Clostridium perfringens type D epsilon toxoid. The following three different vaccines were used: vaccine 1 (V1), a semi-purified toxoid adsorbed to aluminum hydroxide; vaccine 2 (V2), a purified toxoid adsorbed to aluminum hydroxide; and vaccine (V3), a purified toxoid adsorbed on chitosan microparticles. Groups of cattle (n = 6-7) and goats (n = 6-7) were vaccinated on days 0 and 30, and serum samples for antitoxin titration were collected every 30 days for one-year post-vaccination. Goats were revaccinated on day 360, and their serum was evaluated on days 367 and 374. The antibody peaks ranged between 6.90 and 11.47 IU/mL in cattle and from 1.11 to 4.40 IU/mL in goats. In cattle administered with the V1 and V2 vaccines, we observed that the antibody titers were maintained above 0.2 IU/mL until the end of the experiment. In goats, V2 elicited long-lasting antibodies, and all animals maintained the protective titers for 210 days after the first dose. In conclusion, the purified toxoid vaccine with aluminum hydroxide adjuvant was able to induce strong and long-lasting humoral responses in both species and could be an alternative for improving the immunization schedule against enterotoxemia in goats and cattle.


Assuntos
Toxinas Bacterianas/imunologia , Doenças dos Bovinos/imunologia , Doenças dos Bovinos/microbiologia , Infecções por Clostridium/veterinária , Clostridium perfringens/imunologia , Doenças das Cabras/microbiologia , Doenças das Cabras/prevenção & controle , Toxoides/administração & dosagem , Animais , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/imunologia , Toxinas Bacterianas/administração & dosagem , Toxinas Bacterianas/química , Vacinas Bacterianas/administração & dosagem , Vacinas Bacterianas/química , Vacinas Bacterianas/imunologia , Bovinos , Clostridium perfringens/classificação , Enterotoxemia/prevenção & controle , Cabras , Imunidade Humoral , Imunização , Coelhos
9.
Proteins ; 88(11): 1423-1433, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32519353

RESUMO

Structural characterization of alternatively folded and partially disordered protein conformations remains challenging. Outer surface protein A (OspA) is a pivotal protein in Borrelia infection, which is the etiological agent of Lyme disease. OspA exists in equilibrium with intermediate conformations, in which the central and the C-terminal regions of the protein have lower stabilities than the N-terminal. Here, we characterize pressure- and temperature-stabilized intermediates of OspA by nuclear magnetic resonance spectroscopy combined with paramagnetic relaxation enhancement (PRE). We found that although the C-terminal region of the intermediate was partially disordered, it retains weak specific contact with the N-terminal region, owing to a twist of the central ß-sheet and increased flexibility in the polypeptide chain. The disordered C-terminal region of the pressure-stabilized intermediate was more compact than that of the temperature-stabilized form. Further, molecular dynamics simulation demonstrated that temperature-induced disordering of the ß-sheet was initiated at the C-terminal region and continued through to the central region. An ensemble of simulation snapshots qualitatively described the PRE data from the intermediate and indicated that the intermediate structures of OspA may expose tick receptor-binding sites more readily than does the basic folded conformation.


Assuntos
Antígenos de Superfície/química , Proteínas de Artrópodes/química , Proteínas da Membrana Bacteriana Externa/química , Vacinas Bacterianas/química , Borrelia/química , Proteínas Intrinsicamente Desordenadas/química , Lipoproteínas/química , Receptores de Superfície Celular/química , Animais , Antígenos de Superfície/genética , Antígenos de Superfície/metabolismo , Proteínas de Artrópodes/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Vacinas Bacterianas/genética , Vacinas Bacterianas/metabolismo , Sítios de Ligação , Borrelia/metabolismo , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Proteínas Intrinsicamente Desordenadas/genética , Proteínas Intrinsicamente Desordenadas/metabolismo , Lipoproteínas/genética , Lipoproteínas/metabolismo , Simulação de Dinâmica Molecular , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Receptores de Superfície Celular/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Termodinâmica , Carrapatos/microbiologia
10.
J Am Chem Soc ; 142(1): 456-467, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31815459

RESUMO

Pseudomonas aeruginosa belongs to the group of three "critical priority" multi-drug-resistant pathogens listed by WHO and is responsible for severe and often deadly infections such as bloodstream infections and pneumonia. Staphylococcus aureus is also a "high priority" pathogen which is a major cause of serious nosocomial infections such as bacteremia, sepsis, and endocarditis. Owing to their ability to adapt resistance to almost any antibiotics, vaccines against these pathogens are urgently required. These pathogens express structurally unique and densely functionalized glycans on their surfaces which are absent on the host cells. Such carbohydrate antigens are valuable targets for the development of glycoconjugate vaccines and diagnostics. Here, we report the first total synthesis of the conjugation-ready trisaccharide repeating unit of Pseudomonas aeruginosa O11 via a highly stereoselective and efficient assembly of a rare l-fucosamine- and d-fucosamine-containing 1,2-cis-linked disaccharide motif and its regioselective glycosylation at O3. A systematic study was conducted for the notoriously difficult glycosylation with the most unreactive axial 4-OH of the rare disaccharide, and the successful outcome was utilized to accomplish the total synthesis of an aminopropyl linker-attached trisaccharide repeating unit of Staphylococcus aureus capsular polysaccharide type 5, which is also a potential antigen for immunotherapy and vaccine development. The judicious selection of protecting groups and reaction conditions allowed the stereoselective assembly and selective functional group interconversions to access the structurally complex linker-attached trisaccharide repeating units, which are valuable tools for immunological evaluation and vaccine development. The strategy is useful for the synthesis of other structurally related complex glycans.


Assuntos
Cápsulas Bacterianas/química , Vacinas Bacterianas/química , Pseudomonas aeruginosa/imunologia , Staphylococcus aureus/imunologia , Trissacarídeos/química
11.
Microb Pathog ; 138: 103857, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31705999

RESUMO

In the present study, the importance of sodium bicarbonate antacid as an agent for an orally delivered attenuated Salmonella strain secreting Brucella antigens Cu-Zn superoxide dismutase (SodC) and outer membrane protein 19 (Omp19) as a live vaccine candidate against Brucella infection was investigated. First, Brucella antigens SodC and Omp19 were cloned into a prokaryotic constitutive expression vector, pJHL65. Then secretion of proteins was verified after transformation into an attenuated Salmonella typhimurium (ST) strain, JOL1800 (Δlon, ΔcpxR, Δasd, ΔrfaL), using western blot analysis. Mice were orally inoculated with phosphate-buffered saline (PBS) or with a co-mixture Salmonella secreting each antigens at a 1:1 ratio, each containing 1 × 108 CFU/mouse with and without sodium bicarbonate treatment. For antacid treatment, 1.3% w/v sodium bicarbonate was orally administered 30 min before and immediately after immunization with the Salmonella formulation. Humoral and cell-mediated immune responses were evaluated to investigate the efficacy of sodium bicarbonate in an oral formulation. The results indicated that addition of sodium bicarbonate to the vaccine significantly increased (P < 0.05) levels of anti-Brucella-specific systemic IgG responses, lymphocyte proliferation, and CD4+ T cell responses, indicating induction of a mixed Th1-Th2 response. Immunohistochemical assays and bacterial enumeration in intestinal samples also indicated that administration of sodium bicarbonate enhanced colonization of Salmonella. These results indicate that ingestion of the Salmonella formulation with sodium bicarbonate can enhance colonization of Salmonella and induce a significant protective immune response against Brucella compared with a formulation without sodium bicarbonate. Thus, incorporation of sodium bicarbonate as an antacid buffer is highly recommended for this oral live vaccine.


Assuntos
Vacina contra Brucelose , Bicarbonato de Sódio , Vacinas Atenuadas , Administração Oral , Animais , Antígenos de Bactérias/imunologia , Vacinas Bacterianas/administração & dosagem , Vacinas Bacterianas/biossíntese , Vacinas Bacterianas/química , Vacina contra Brucelose/administração & dosagem , Vacina contra Brucelose/biossíntese , Vacina contra Brucelose/química , Imunidade Celular , Imunidade Humoral , Intestinos/imunologia , Intestinos/microbiologia , Camundongos , Microrganismos Geneticamente Modificados , Salmonella typhimurium/genética , Salmonella typhimurium/imunologia , Bicarbonato de Sódio/administração & dosagem , Transformação Bacteriana , Vacinação/métodos , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/biossíntese , Vacinas Atenuadas/química
12.
Curr Top Microbiol Immunol ; 421: 1-19, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31123883

RESUMO

It has been over 30 years since a link was established between H. pylori infection of the gastric mucosa and the development of chronic gastric diseases. Research in rodent models supported by data from human tissue demonstrated that the host immune response to H. pylori is limited by host regulatory T cells. Immunization has been shown to induce a potent Th1- and Th17-mediated immune response capable of eradicating or at least significantly reducing the bacterial load of H. pylori in the stomach in small animal models. These results have not translated well to humans. Clinical trials employing many of the strategies used in rodents for oral immunization including the use of a mucosal adjuvant such as Escherichia coli LT or delivery by attenuated enteric bacteria have failed to limit H. pylori infection and have highlighted the potential toxicity of exotoxin-based mucosal adjuvants. A recent study, however, utilizing a recombinant fusion protein of H. pylori urease and the subunit B of E. coli LT, was performed on over 4000 children. Efficacy of over 70% was demonstrated against naturally acquired infection compared to control volunteers one year post-immunization. Efficacy was reduced, but still above 50% at three years. This study provided new insight into the strategies for developing an improved vaccine for widespread use in countries with high infection rates and where gastric cancer (GC) remains one of the most common causes of death due to cancer.


Assuntos
Vacinas Bacterianas/imunologia , Mucosa Gástrica/microbiologia , Infecções por Helicobacter/imunologia , Infecções por Helicobacter/patologia , Helicobacter pylori/imunologia , Helicobacter pylori/patogenicidade , Animais , Anticorpos Antibacterianos/imunologia , Vacinas Bacterianas/química , Escherichia coli/imunologia , Mucosa Gástrica/imunologia , Mucosa Gástrica/patologia , Infecções por Helicobacter/microbiologia , Infecções por Helicobacter/prevenção & controle , Humanos , Inflamação/imunologia , Inflamação/microbiologia , Inflamação/patologia
13.
J Biomed Sci ; 27(1): 9, 2020 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-31900143

RESUMO

Glycoconjugate vaccines based on bacterial capsular polysaccharides (CPS) have been extremely successful in preventing bacterial infections. The glycan antigens for the preparation of CPS based glycoconjugate vaccines are mainly obtained from bacterial fermentation, the quality and length of glycans are always inconsistent. Such kind of situation make the CMC of glycoconjugate vaccines are difficult to well control. Thanks to the advantage of synthetic methods for carbohydrates syntheses. The well controlled glycan antigens are more easily to obtain, and them are conjugated to carrier protein to from the so-call homogeneous fully synthetic glycoconjugate vaccines. Several fully glycoconjugate vaccines are in different phases of clinical trial for bacteria or cancers. The review will introduce the recent development of fully synthetic glycoconjugate vaccine.


Assuntos
Infecções Bacterianas/prevenção & controle , Carboidratos/uso terapêutico , Polissacarídeos/imunologia , Vacinas Sintéticas/imunologia , Antígenos/imunologia , Cápsulas Bacterianas/genética , Cápsulas Bacterianas/imunologia , Infecções Bacterianas/imunologia , Vacinas Bacterianas/química , Vacinas Bacterianas/imunologia , Vacinas Bacterianas/uso terapêutico , Carboidratos/química , Carboidratos/imunologia , Glicoconjugados/química , Glicoconjugados/imunologia , Glicoconjugados/uso terapêutico , Humanos , Polissacarídeos/química , Polissacarídeos/uso terapêutico , Polissacarídeos Bacterianos/química , Polissacarídeos Bacterianos/imunologia , Vacinas Conjugadas/química , Vacinas Conjugadas/imunologia , Vacinas Conjugadas/uso terapêutico , Vacinas Sintéticas/química , Vacinas Sintéticas/uso terapêutico
14.
Fish Shellfish Immunol ; 98: 186-192, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31926291

RESUMO

Vibrio harveyi is the pathogen causing vibriosis in marine-cultured animals, leading to massive deaths in farmed grouper around the world. It is urgent to develop an effective vaccine to prevent vibriosis. In the previous study, we developed a V. harveyi formalin-killed cells vaccine (FKC), and sought an effective adjuvant for enhancing the immune efficacy of vaccine. In this study, we aimed to evaluate the immune responses and protective effect of FKC combined with chitosan oligosaccharide (COS) or Astragalus polysaccharides (APS) in the pearl gentian grouper♀Epinephelus fuscoguttatus × â™‚E. lanceolatus. The results indicated the vaccine triggered a remarkably higher expression levels of IL-1ß, IL-16, TNF-α, MHC-Iα and IgM in the kidney and spleen of groupers post-vaccination. Antibody titers, lysozyme, catalase, superoxide dismutase and total protein were significantly elevated in the vaccinated fish compared with those in the control. The experimental groupers were challenged intraperitoneally by V. harveyi at 35 d post-vaccination, and the relative percentage of survival (RPS) of group FKC + COS, FKC + APS, COS, APS and FKC were 80%, 72%, 52%, 47% and 55%, respectively. These results demonstrated COS and APS was the potential adjuvants for FKC against V. harveyi in aquaculture.


Assuntos
Astrágalo/imunologia , Vacinas Bacterianas/imunologia , Bass/imunologia , Quitosana/imunologia , Doenças dos Peixes/prevenção & controle , Vibrioses/veterinária , Vibrio/imunologia , Adjuvantes Imunológicos/administração & dosagem , Animais , Anticorpos Antibacterianos/sangue , Aquicultura , Astrágalo/química , Vacinas Bacterianas/administração & dosagem , Vacinas Bacterianas/química , Bass/microbiologia , Quitosana/administração & dosagem , Citocinas/imunologia , Doenças dos Peixes/microbiologia , Formaldeído/farmacologia , Rim/imunologia , Oligossacarídeos/administração & dosagem , Oligossacarídeos/imunologia , Polissacarídeos/administração & dosagem , Polissacarídeos/imunologia , Baço/imunologia , Vacinação/veterinária , Vacinas de Produtos Inativados/administração & dosagem , Vacinas de Produtos Inativados/química , Vacinas de Produtos Inativados/imunologia , Vibrioses/microbiologia , Vibrioses/prevenção & controle
15.
Angew Chem Int Ed Engl ; 59(29): 12035-12040, 2020 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-32307806

RESUMO

Glypiation is a common posttranslational modification of eukaryotic proteins involving the attachment of a glycosylphosphatidylinositol (GPI) glycolipid. GPIs contain a conserved phosphoglycan that is modified in a cell- and tissue-specific manner. GPI complexity suggests roles in biological processes and effects on the attached protein, but the difficulties to get homogeneous material have hindered studies. We disclose a one-pot intein-mediated ligation (OPL) to obtain GPI-anchored proteins. The strategy enables the glypiation of folded and denatured proteins with a natural linkage to the glycolipid. Using the strategy, glypiated eGFP, Thy1, and the Plasmodium berghei protein MSP119 were prepared. Glypiation did not alter the structure of eGFP and MSP119 proteins in solution, but it induced a strong pro-inflammatory response in vitro. The strategy provides access to glypiated proteins to elucidate the activity of this modification and for use as vaccine candidates against parasitic infections.


Assuntos
Glicosilfosfatidilinositóis/síntese química , Proteínas de Membrana/química , Proteínas de Bactérias/química , Vacinas Bacterianas/química , Sequência de Carboidratos , Glicolipídeos , Proteínas de Fluorescência Verde , Humanos , Modelos Moleculares , Plasmodium berghei , Processamento de Proteína Pós-Traducional
16.
Infect Immun ; 87(10)2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31331958

RESUMO

Infection with Coxiella burnetii, the causative agent of Q fever, can result in life-threatening persistent infection. Reactogenicity hinders worldwide implementation of the only licensed human Q fever vaccine. We previously demonstrated long-lived immunoreactivity in individuals with past symptomatic and asymptomatic Coxiella infection (convalescents) to promiscuous HLA class II C. burnetii epitopes, providing the basis for a novel T-cell targeted subunit vaccine. In this study, we investigated in a cohort of 22 individuals treated for persistent infection (chronic Q fever) whether they recognize the same set of epitopes or distinct epitopes that could be candidates for a therapeutic vaccine or aid in the diagnosis of persistent infection. In cultured enzyme-linked immunosorbent spot (ELISpot) assays, individuals with chronic Q fever showed strong class II epitope-specific responses that were largely overlapping with the peptide repertoire identified previously for convalescents. Five additional peptides were recognized more frequently by chronic subjects, but there was no combination of epitopes uniquely recognized by or nonreactive in subjects with chronic Q fever. Consistent with more recent/prolonged exposure, we found, however, stronger ex vivo responses by direct ELISpot to both whole-cell C. burnetii and individual peptides in chronic patients than in convalescents. In conclusion, we have validated and expanded a previously published set of candidate epitopes for a novel T-cell targeted subunit Q fever vaccine in treated patients with chronic Q fever and demonstrated that they successfully mounted a T-cell response comparable to that of convalescents. Finally, we demonstrated that individuals treated for chronic Q fever mount a broader ex vivo response to class II epitopes than convalescents, which could be explored for diagnostic purposes.


Assuntos
Anticorpos Antibacterianos/biossíntese , Antígenos de Bactérias/imunologia , Coxiella burnetii/imunologia , Epitopos de Linfócito T/imunologia , Febre Q/imunologia , Idoso , Antibacterianos/uso terapêutico , Antígenos de Bactérias/química , Antígenos de Bactérias/genética , Vacinas Bacterianas/química , Vacinas Bacterianas/imunologia , Doença Crônica , Convalescença , Coxiella burnetii/patogenicidade , ELISPOT , Epitopos de Linfócito T/química , Epitopos de Linfócito T/genética , Feminino , Expressão Gênica , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe II/imunologia , Teste de Histocompatibilidade , Humanos , Interferon gama/genética , Interferon gama/imunologia , Masculino , Pessoa de Meia-Idade , Peptídeos/genética , Peptídeos/imunologia , Febre Q/tratamento farmacológico , Febre Q/genética , Febre Q/prevenção & controle , Linfócitos T/imunologia , Linfócitos T/microbiologia
17.
Crit Rev Microbiol ; 45(1): 82-102, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30632429

RESUMO

Protein glycosylation systems in many bacteria are often associated with crucial biological processes like pathogenicity, immune evasion and host-pathogen interactions, implying the significance of protein-glycan linkage. Similarly, host protein glycosylation has been implicated in antimicrobial activity as well as in promoting growth of beneficial strains. In fact, few pathogens notably modulate host glycosylation machineries to facilitate their survival. To date, diverse chemical and biological strategies have been developed for conjugate vaccine production for disease control. Bioconjugate vaccines, largely being produced by glycoengineering using PglB (the N-oligosaccharyltransferase from Campylobacter jejuni) in suitable bacterial hosts, have been highly promising with respect to their effectiveness in providing protective immunity and ease of production. Recently, a novel method of glycoconjugate vaccine production involving an O-oligosaccharyltransferase, PglL from Neisseria meningitidis, has been optimized. Nevertheless, many questions on defining antigenic determinants, glycosylation markers, species-specific differences in glycosylation machineries, etc. still remain unanswered, necessitating further exploration of the glycosylation systems of important pathogens. Hence, in this review, we will discuss the impact of bacterial protein glycosylation on its pathogenesis and the interaction of pathogens with host protein glycosylation, followed by a discussion on strategies used for bioconjugate vaccine development.


Assuntos
Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Glicosilação , Interações Hospedeiro-Patógeno , Bactérias/patogenicidade , Vacinas Bacterianas/química , Vacinas Bacterianas/imunologia
18.
Curr Top Microbiol Immunol ; 415: 239-271, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29196824

RESUMO

Lipoproteins are lipid-modified proteins that dominate the spirochetal proteome. While found in all bacteria, spirochetal lipoproteins have unique features and play critical roles in spirochete biology. For this reason, considerable effort has been devoted to determining how the lipoproteome is generated. Essential features of the structural elements of lipoproteins are now understood with greater clarity, enabling greater confidence in identification of lipoproteins from genomic sequences. The journey from the ribosome to the outer membrane, and in some cases, to the cellular surface has been defined, including secretion, lipidation, sorting, and export across the outer membrane. Given their abundance and importance, it is not surprising that spirochetes have developed a number of strategies for regulating the spatiotemporal expression of lipoproteins. In some cases, lipoprotein expression is tied to various environmental cues, while in other cases, it is linked to growth rate. This regulation enables spirochetes to express certain lipoproteins at high levels in one phase of the spirochete lifecycle, while dramatically downregulating the same lipoproteins in other phases. The mammalian host has developed specialized mechanisms for recognizing lipoproteins and triggering an immune response. Evasion of that immune response is essential for spirochete persistence. For this reason, spirochetes have developed mechanisms for altering lipoproteins. Lipoproteins recognized by antibodies formed during infection are key serodiagnostic antigens. In addition, lipoprotein vaccines have been developed for generating an immune response to control or prevent a spirochete infection. This chapter summarizes our current understanding of lipoproteins in interactions of spirochetes with their hosts.


Assuntos
Proteínas de Bactérias/imunologia , Proteínas de Bactérias/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Lipoproteínas/imunologia , Lipoproteínas/metabolismo , Spirochaetales/imunologia , Spirochaetales/patogenicidade , Animais , Antígenos de Bactérias/química , Antígenos de Bactérias/imunologia , Proteínas de Bactérias/química , Vacinas Bacterianas/química , Vacinas Bacterianas/imunologia , Humanos , Doença de Lyme/microbiologia , Transporte Proteico
19.
Biotechnol Bioeng ; 116(3): 591-597, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30450582

RESUMO

Conjugated vaccines prepared from the capsular polysaccharide of Streptococcus pneumoniae can provide immunization against invasive pneumococcal disease, meningitis, and otitis media. One of the critical steps in the production of these vaccines is the removal of free (unreacted) polysaccharides from the protein-polysaccharide conjugate. Experimental studies were performed to evaluate the effects of membrane pore size, filtrate flux, and solution conditions on the transmission of both the conjugate and free polysaccharide through different ultrafiltration membranes. Conjugate purification was done using diafiltration performed in a linearly-scalable tangential flow filtration cassette. More than 98% of the free polysaccharide was removed within a 5-diavolume diafiltration process, which is a significant improvement over previously reported results for purification of similar conjugated vaccines. These results clearly demonstrate the opportunities for using ultrafiltration/diafiltration for the final purification of conjugated vaccine products.


Assuntos
Cápsulas Bacterianas/química , Vacinas Bacterianas/isolamento & purificação , Polissacarídeos Bacterianos/isolamento & purificação , Ultrafiltração/métodos , Vacinas Conjugadas/isolamento & purificação , Proteínas de Bactérias/isolamento & purificação , Vacinas Bacterianas/química , Porosidade , Streptococcus pneumoniae/química , Vacinas Conjugadas/química
20.
Fish Shellfish Immunol ; 86: 635-640, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30528659

RESUMO

Vaccination is the most effective approach for prevention of infectious diseases in aquaculture. Although immersion vaccination is more applicable compared to in-feed/oral administration and injection, this method suffers from low potency as the efficiency of uptake of antigens through mucosal membranes is limited. In this study, we have successfully developed a mucoadhesive vaccine delivery system to enhance the efficacy of direct immersion vaccination against Flavobacterium columnare, the causative agent of columnaris disease in red tilapia. A formalin-killed negatively charged, bacterial cell suspension was used to prepare a mucoadhesive vaccine by electrostatic coating with positively charged chitosan. Our results demonstrate that the chitosan-complexed vaccine greatly increases its mucoadhesiveness, thus increasing the chances of vaccine uptake by the gill mucosa and improving the protection obtained against columnaris infection. The surface charge of the chitosan-complexed vaccine was altered from anionic to cationic after chitosan modification. Tilapia were vaccinated with the prepared chitosan-complexed vaccine by immersion. The challenge test was then carried out 30 and 60 days post vaccination, which resulted in a high level of mortalities in the non-vaccinated and uncomplexed vaccine groups. A high relative percentage survival (RPS) of vaccinated fish was noted with the mucoadhesive vaccine. Our results indicated that the naked vaccine failed to protect the fish from columnaris infection, which is consistent with the mucoadhesive assays performed during the study showing that the naked vaccine was unable to bind to mucosal surfaces. This system is therefore an effective method for immersion vaccination in order to deliver the antigen preparation to the mucosal surface membrane of the fish.


Assuntos
Vacinas Bacterianas/uso terapêutico , Doenças dos Peixes/prevenção & controle , Infecções por Flavobacteriaceae/veterinária , Polímeros/química , Tilápia/imunologia , Vacinação/métodos , Adesivos/química , Animais , Aquicultura , Vacinas Bacterianas/química , Quitosana/química , Infecções por Flavobacteriaceae/prevenção & controle , Flavobacterium , Brânquias/imunologia , Imersão , Mucosa/metabolismo , Eletricidade Estática , Propriedades de Superfície , Tilápia/microbiologia , Vacinas de Produtos Inativados/química , Vacinas de Produtos Inativados/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa