Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 159
Filtrar
1.
Cell ; 160(6): 1196-208, 2015 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-25728669

RESUMO

Most cell-surface receptors for cytokines and growth factors signal as dimers, but it is unclear whether remodeling receptor dimer topology is a viable strategy to "tune" signaling output. We utilized diabodies (DA) as surrogate ligands in a prototypical dimeric receptor-ligand system, the cytokine Erythropoietin (EPO) and its receptor (EpoR), to dimerize EpoR ectodomains in non-native architectures. Diabody-induced signaling amplitudes varied from full to minimal agonism, and structures of these DA/EpoR complexes differed in EpoR dimer orientation and proximity. Diabodies also elicited biased or differential activation of signaling pathways and gene expression profiles compared to EPO. Non-signaling diabodies inhibited proliferation of erythroid precursors from patients with a myeloproliferative neoplasm due to a constitutively active JAK2V617F mutation. Thus, intracellular oncogenic mutations causing ligand-independent receptor activation can be counteracted by extracellular ligands that re-orient receptors into inactive dimer topologies. This approach has broad applications for tuning signaling output for many dimeric receptor systems.


Assuntos
Receptores da Eritropoetina/química , Receptores da Eritropoetina/metabolismo , Transdução de Sinais , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/metabolismo , Linhagem Celular , Cristalografia por Raios X , Dimerização , Eritropoetina/metabolismo , Humanos , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Camundongos , Modelos Moleculares , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Mutação Puntual , Engenharia de Proteínas , Receptores da Eritropoetina/agonistas , Receptores da Eritropoetina/antagonistas & inibidores , Alinhamento de Sequência
2.
Blood ; 142(21): 1818-1830, 2023 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-37616564

RESUMO

The thrombopoietin receptor (TpoR) plays a central role in myeloproliferative neoplasms (MPNs). Mutations in JAK2, calreticulin, or TpoR itself drive the constitutive activation of TpoR and uncontrolled proliferation and differentiation of hematopoietic stem cells and progenitors. The JAK2 V617F mutation is responsible for most MPNs, and all driver mutants induce pathologic TpoR activation. Existing therapeutic strategies have focused on JAK2 kinase inhibitors that are unable to differentiate between the mutated MPN clone and healthy cells. Surprisingly, the targeting of TpoR itself has remained poorly explored despite its central role in pathology. Here, we performed a comprehensive characterization of human TpoR activation under physiological and pathological conditions, focusing on the JAK2 V617F mutant. Using a system of controlled dimerization of the transmembrane and cytosolic domains of TpoR, we discovered that human TpoR (hTpoR) adopts different dimeric conformations upon Tpo-induced vs JAK2 V617F-mediated activation. We identified the amino acids and specific dimeric conformation of hTpoR responsible for activation in complex with JAK2 V617F and confirmed our findings in the full-length receptor context in hematopoietic cell lines and primary bone marrow cells. Remarkably, we found that the modulation of hTpoR conformations by point mutations allowed for specific inhibition of JAK2 V617F-driven activation without affecting Tpo-induced signaling. Our results demonstrate that modulation of the hTpoR conformation is a viable therapeutic strategy for JAK2 V617F-positive MPNs and set the path for novel drug development by identifying precise residues of hTpoR involved in JAK2 V617F-specific activation.


Assuntos
Transtornos Mieloproliferativos , Receptores de Trombopoetina , Humanos , Receptores de Trombopoetina/metabolismo , Citocinas/genética , Transtornos Mieloproliferativos/genética , Mutação , Transdução de Sinais , Janus Quinase 2/metabolismo
3.
Blood ; 141(5): 490-502, 2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36322928

RESUMO

Primary myelofibrosis (PMF) is a myeloproliferative neoplasm characterized by the clonal expansion of myeloid cells, notably megakaryocytes (MKs), and an aberrant cytokine production leading to bone marrow (BM) fibrosis and insufficiency. Current treatment options are limited. TGF-ß1, a profibrotic and immunosuppressive cytokine, is involved in PMF pathogenesis. While all cell types secrete inactive, latent TGF-ß1, only a few activate the cytokine via cell type-specific mechanisms. The cellular source of the active TGF-ß1 implicated in PMF is not known. Transmembrane protein GARP binds and activates latent TGF-ß1 on the surface of regulatory T lymphocytes (Tregs) and MKs or platelets. Here, we found an increased expression of GARP in the BM and spleen of mice with PMF and tested the therapeutic potential of a monoclonal antibody (mAb) that blocks TGF-ß1 activation by GARP-expressing cells. GARP:TGF-ß1 blockade reduced not only fibrosis but also the clonal expansion of transformed cells. Using mice carrying a genetic deletion of Garp in either Tregs or MKs, we found that the therapeutic effects of GARP:TGF-ß1 blockade in PMF imply targeting GARP on Tregs. These therapeutic effects, accompanied by increased IFN-γ signals in the spleen, were lost upon CD8 T-cell depletion. Our results suggest that the selective blockade of TGF-ß1 activation by GARP-expressing Tregs increases a CD8 T-cell-mediated immune reaction that limits transformed cell expansion, providing a novel approach that could be tested to treat patients with myeloproliferative neoplasms.


Assuntos
Mielofibrose Primária , Fator de Crescimento Transformador beta1 , Camundongos , Animais , Mielofibrose Primária/tratamento farmacológico , Mielofibrose Primária/genética , Mielofibrose Primária/metabolismo , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais/metabolismo , Citocinas/metabolismo , Fibrose , Linfócitos T Reguladores
4.
Blood ; 141(8): 917-929, 2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36356299

RESUMO

Mutant calreticulin (CALR) proteins resulting from a -1/+2 frameshifting mutation of the CALR exon 9 carry a novel C-terminal amino acid sequence and drive the development of myeloproliferative neoplasms (MPNs). Mutant CALRs were shown to interact with and activate the thrombopoietin receptor (TpoR/MPL) in the same cell. We report that mutant CALR proteins are secreted and can be found in patient plasma at levels up to 160 ng/mL, with a mean of 25.64 ng/mL. Plasma mutant CALR is found in complex with soluble transferrin receptor 1 (sTFR1) that acts as a carrier protein and increases mutant CALR half-life. Recombinant mutant CALR proteins bound and activated the TpoR in cell lines and primary megakaryocytic progenitors from patients with mutated CALR in which they drive thrombopoietin-independent colony formation. Importantly, the CALR-sTFR1 complex remains functional for TpoR activation. By bioluminescence resonance energy transfer assay, we show that mutant CALR proteins produced in 1 cell can specifically interact in trans with the TpoR on a target cell. In comparison with cells that only carry TpoR, cells that carry both TpoR and mutant CALR are hypersensitive to exogenous mutant CALR proteins and respond to levels of mutant CALR proteins similar to those in patient plasma. This is consistent with CALR-mutated cells that expose TpoR carrying immature N-linked sugars at the cell surface. Thus, secreted mutant CALR proteins will act more specifically on the MPN clone. In conclusion, a chaperone, CALR, can turn into a rogue cytokine through somatic mutation of its encoding gene.


Assuntos
Transtornos Mieloproliferativos , Neoplasias , Humanos , Citocinas/metabolismo , Calreticulina/genética , Transtornos Mieloproliferativos/genética , Mutação , Fatores Imunológicos , Janus Quinase 2/genética
5.
Am J Hematol ; 99(7): 1220-1229, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38629639

RESUMO

Polycythemia vera (PV) is a clonal disorder arising from the acquired somatic mutations of the JAK2 gene, including JAK2V617F or several others in exon 12. A 38-year-old female had a stroke at age 32 and found to have elevated hemoglobin, normal leukocytes, normal platelets, and tested negative for JAK2V617F and exon 12 mutations. Next generation sequencing revealed a novel mutation: JAK2R715T in the pseudokinase domain (JH2) at 47.5%. Its presence in her nail DNA confirmed a germline origin. Her mother and her son similarly had erythrocytosis and a JAK2R715T mutation. Computer modeling indicated gain-of-function JAK2 activity. The propositus and her mother had polyclonal myelopoiesis, ruling out another somatic mutation-derived clonal hematopoiesis. Some erythroid progenitors of all three generations grew without erythropoietin, a hallmark of PV. The in vitro reporter assay confirmed increased activity of the JAK2R715T kinase. Similar to PV, the JAK2R715T native cells have increased STAT5 phosphorylation, augmented transcripts of prothrombotic and inflammatory genes, and decreased KLF2 transcripts. The propositus was not controlled by hydroxyurea, and JAK2 inhibitors were not tolerated; however, Ropeginterferon-alfa-2b (Ropeg-IFN-α) induced a remission. Ropeg-IFN-α treatment also reduced JAK2 activity in the propositus, her mother and JAK2V617F PV subjects. We report dominantly inherited erythrocytosis secondary to a novel germline JAK2R715T gain-of-function mutation with many but not all comparable molecular features to JAK2V617F PV. We also document a previously unreported inhibitory mechanism of JAK2 signaling by Ropeg-IFN-α.


Assuntos
Mutação em Linhagem Germinativa , Janus Quinase 2 , Policitemia , Adulto , Feminino , Humanos , Mutação com Ganho de Função , Interferon-alfa/uso terapêutico , Janus Quinase 2/genética , Linhagem , Policitemia/genética , Policitemia/tratamento farmacológico , Policitemia Vera/genética , Policitemia Vera/tratamento farmacológico
6.
Blood ; 138(6): 480-485, 2021 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-34010413

RESUMO

Congenital amegakaryocytic thrombocytopenia (CAMT) is a severe inherited thrombocytopenia due to loss-of-function mutations affecting the thrombopoietin (TPO) receptor, MPL. Here, we report a new homozygous MPL variant responsible for CAMT in 1 consanguineous family. The propositus and her sister presented with severe thrombocytopenia associated with mild anemia. Next-generation sequencing revealed the presence of a homozygous MPLR464G mutation resulting in a weak cell-surface expression of the receptor in platelets. In cell lines, we observed a defect in MPLR464G maturation associated with its retention in the endoplasmic reticulum. The low cell-surface expression of MPLR464G induced very limited signaling with TPO stimulation, leading to survival and reduced proliferation of cells. Overexpression of a myeloproliferative neoplasm-associated calreticulin (CALR) mutant did not rescue trafficking of MPLR464G to the cell surface and did not induce constitutive signaling. However, it unexpectedly restored a normal response to eltrombopag (ELT), but not to TPO. This effect was only partially mimicked by the purified recombinant CALR mutant protein. Finally, the endogenous CALR mutant was able to restore the megakaryocyte differentiation of patient CD34+ cells carrying MPLR464G in response to ELT.


Assuntos
Benzoatos/farmacologia , Calreticulina , Síndrome Congênita de Insuficiência da Medula Óssea , Hidrazinas/farmacologia , Mutação de Sentido Incorreto , Pirazóis/farmacologia , Receptores de Trombopoetina , Trombocitopenia , Adulto , Substituição de Aminoácidos , Calreticulina/genética , Calreticulina/metabolismo , Criança , Pré-Escolar , Síndrome Congênita de Insuficiência da Medula Óssea/tratamento farmacológico , Síndrome Congênita de Insuficiência da Medula Óssea/genética , Síndrome Congênita de Insuficiência da Medula Óssea/metabolismo , Síndrome Congênita de Insuficiência da Medula Óssea/patologia , Feminino , Células HEK293 , Homozigoto , Humanos , Lactente , Masculino , Receptores de Trombopoetina/genética , Receptores de Trombopoetina/metabolismo , Trombocitopenia/tratamento farmacológico , Trombocitopenia/genética , Trombocitopenia/metabolismo , Trombocitopenia/patologia
7.
Blood ; 137(14): 1920-1931, 2021 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-33202418

RESUMO

Somatic mutations of calreticulin (CALR) have been identified as a main disease driver of myeloproliferative neoplasms, suggesting that development of drugs targeting mutant CALR is of great significance. Site-directed mutagenesis in the N-glycan binding domain (GBD) abolishes the ability of mutant CALR to oncogenically activate the thrombopoietin receptor (MPL). We therefore hypothesized that a small molecule targeting the GBD might inhibit the oncogenicity of the mutant CALR. Using an in silico molecular docking study, we identified candidate binders to the GBD of CALR. Further experimental validation of the hits identified a group of catechols inducing a selective growth inhibitory effect on cells that depend on oncogenic CALR for survival and proliferation. Apoptosis-inducing effects by the compound were significantly higher in the CALR-mutated cells than in CALR wild-type cells. Additionally, knockout or C-terminal truncation of CALR eliminated drug hypersensitivity in CALR-mutated cells. We experimentally confirmed the direct binding of the selected compound to CALR, disruption of the mutant CALR-MPL interaction, inhibition of the JAK2-STAT5 pathway, and reduction at the intracellular level of mutant CALR upon drug treatment. Our data indicate that small molecules targeting the GBD of CALR can selectively kill CALR-mutated cells by disrupting the CALR-MPL interaction and inhibiting oncogenic signaling.


Assuntos
Calreticulina/metabolismo , Hematoxilina/farmacologia , Mapas de Interação de Proteínas/efeitos dos fármacos , Receptores de Trombopoetina/metabolismo , Animais , Sítios de Ligação/efeitos dos fármacos , Calreticulina/química , Calreticulina/genética , Linhagem Celular , Descoberta de Drogas , Humanos , Camundongos , Simulação de Acoplamento Molecular , Mutagênese Sítio-Dirigida , Mutação , Transtornos Mieloproliferativos/tratamento farmacológico , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/metabolismo , Ligação Proteica/efeitos dos fármacos , Receptores de Trombopoetina/química
8.
Blood ; 138(22): 2231-2243, 2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34407546

RESUMO

Classical BCR-ABL-negative myeloproliferative neoplasms (MPNs) are clonal disorders of hematopoietic stem cells (HSCs) caused mainly by recurrent mutations in genes encoding JAK2 (JAK2), calreticulin (CALR), or the thrombopoietin receptor (MPL). Interferon α (IFNα) has demonstrated some efficacy in inducing molecular remission in MPNs. To determine factors that influence molecular response rate, we evaluated the long-term molecular efficacy of IFNα in patients with MPN by monitoring the fate of cells carrying driver mutations in a prospective observational and longitudinal study of 48 patients over more than 5 years. We measured the clonal architecture of early and late hematopoietic progenitors (84 845 measurements) and the global variant allele frequency in mature cells (409 measurements) several times per year. Using mathematical modeling and hierarchical Bayesian inference, we further inferred the dynamics of IFNα-targeted mutated HSCs. Our data support the hypothesis that IFNα targets JAK2V617F HSCs by inducing their exit from quiescence and differentiation into progenitors. Our observations indicate that treatment efficacy is higher in homozygous than heterozygous JAK2V617F HSCs and increases with high IFNα dose in heterozygous JAK2V617F HSCs. We also found that the molecular responses of CALRm HSCs to IFNα were heterogeneous, varying between type 1 and type 2 CALRm, and a high dose of IFNα correlates with worse outcomes. Our work indicates that the long-term molecular efficacy of IFNα implies an HSC exhaustion mechanism and depends on both the driver mutation type and IFNα dose.


Assuntos
Células-Tronco Hematopoéticas/efeitos dos fármacos , Fatores Imunológicos/uso terapêutico , Interferon-alfa/uso terapêutico , Mutação/efeitos dos fármacos , Transtornos Mieloproliferativos/tratamento farmacológico , Calreticulina/genética , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/patologia , Humanos , Fatores Imunológicos/farmacologia , Interferon-alfa/farmacologia , Janus Quinase 2/genética , Estudos Longitudinais , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/patologia , Estudos Prospectivos , Receptores de Trombopoetina/genética , Células Tumorais Cultivadas
9.
Blood ; 135(12): 948-953, 2020 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-31978223

RESUMO

Mutations in the MPL gene encoding the human thrombopoietin receptor (TpoR) drive sporadic and familial essential thrombocythemias (ETs). We identified 2 ET patients harboring double mutations in cis in MPL, namely, L498W-H499C and H499Y-S505N. Using biochemical and signaling assays along with partial saturation mutagenesis, we showed that L498W is an activating mutation potentiated by H499C and that H499C and H499Y enhance the activity of the canonical S505N mutation. L498W and H499C can activate a truncated TpoR mutant, which lacks the extracellular domain, indicating these mutations act on the transmembrane (TM) cytosolic domain. Using a protein complementation assay, we showed that L498W and H499C strongly drive dimerization of TpoR. Activation by tryptophan substitution is exquisitely specific for position 498. Using structure-guided mutagenesis, we identified upstream amino acid W491 as a key residue required for activation by L498W or canonical activating mutations such as S505N and W515K, as well as by eltrombopag. Structural data point to a common dimerization and activation path for TpoR via its TM domain that is shared between the small-molecule agonist eltrombopag and canonical and novel activating TpoR mutations that all depend on W491, a potentially accessible extracellular residue that could become a target for therapeutic intervention.


Assuntos
Benzoatos/farmacologia , Predisposição Genética para Doença , Hidrazinas/farmacologia , Mutação , Pirazóis/farmacologia , Receptores de Trombopoetina/agonistas , Receptores de Trombopoetina/genética , Trombocitemia Essencial/genética , Alelos , Substituição de Aminoácidos , Linhagem Celular , Estudos de Associação Genética , Humanos , Fenótipo , Transdução de Sinais/efeitos dos fármacos , Trombocitemia Essencial/diagnóstico , Trombocitemia Essencial/metabolismo
11.
Blood ; 133(25): 2669-2681, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-30902807

RESUMO

Calreticulin (CALR) +1 frameshift mutations in exon 9 are prevalent in myeloproliferative neoplasms. Mutant CALRs possess a new C-terminal sequence rich in positively charged amino acids, leading to activation of the thrombopoietin receptor (TpoR/MPL). We show that the new sequence endows the mutant CALR with rogue chaperone activity, stabilizing a dimeric state and transporting TpoR and mutants thereof to the cell surface in states that would not pass quality control; this function is absolutely required for oncogenic transformation. Mutant CALRs determine traffic via the secretory pathway of partially immature TpoR, as they protect N117-linked glycans from further processing in the Golgi apparatus. A number of engineered or disease-associated TpoRs such as TpoR/MPL R102P, which causes congenital thrombocytopenia, are rescued for traffic and function by mutant CALRs, which can also overcome endoplasmic reticulum retention signals on TpoR. In addition to requiring N-glycosylation of TpoR, mutant CALRs require a hydrophobic patch located in the extracellular domain of TpoR to induce TpoR thermal stability and initial intracellular activation, whereas full activation requires cell surface localization of TpoR. Thus, mutant CALRs are rogue chaperones for TpoR and traffic-defective TpoR mutants, a function required for the oncogenic effects.


Assuntos
Calreticulina/genética , Calreticulina/metabolismo , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/metabolismo , Receptores de Trombopoetina/metabolismo , Animais , Humanos , Camundongos , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Mutação , Transporte Proteico/fisiologia
12.
Blood ; 134(26): 2388-2398, 2019 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-31697804

RESUMO

The V617F mutation in the JH2 domain of Janus kinase 2 (JAK2) is an oncogenic driver in several myeloproliferative neoplasms (MPNs), including essential thrombocythemia, myelofibrosis, and polycythemia vera (PV). Other mutations in JAK2 have been identified in MPNs, most notably exon 12 mutations in PV. Here, we describe a novel recurrent mutation characterized by a common 4-amino-acid deletion and variable 1-amino-acid insertion (Leu583-Ala586DelInsSer/Gln/Pro) within the JH2 domain of JAK2. All 4 affected patients had eosinophilia, and both patients with Leu583-Ala586DelInsSer fulfilled diagnostic criteria of both PV and chronic eosinophilic leukemia (CEL). Computational and functional studies revealed that Leu583-Ala586DelInsSer (herein referred to as JAK2ex13InDel) deregulates JAK2 through a mechanism similar to JAK2V617F, activates signal transducer and activator of transcription 5 and extracellular signal-regulated kinase, and transforms parental Ba/F3 cells to growth factor independence. In contrast to JAK2V617F, JAK2ex13InDel does not require an exogenous homodimeric type 1 cytokine receptor to transform Ba/F3 cells and is capable of activating ß common chain family cytokine receptor (interleukin-3 receptor [IL-3R], IL-5R, and granulocyte-macrophage colony stimulating factor receptor) signaling in the absence of ligand, with the maximum effect observed for IL-5R, consistent with the clinical phenotype of eosinophilia. Recognizing this new PV/CEL-overlap MPN has significant clinical implications, as both PV and CEL patients are at high risk for thrombosis, and concomitant cytoreduction of red cells, neutrophils, and eosinophils may be required for prevention of thromboembolic events. Targeted next-generation sequencing for genes recurrently mutated in myeloid malignancies in patients with unexplained eosinophilia may reveal additional cases of Leu583-Ala586DelInsSer/Gln/Pro, allowing for complete characterization of this unique MPN.


Assuntos
Linfócitos B/patologia , Transformação Celular Neoplásica/patologia , Síndrome Hipereosinofílica/patologia , Mutação INDEL , Janus Quinase 2/genética , Leucemia/patologia , Policitemia Vera/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Sequência de Aminoácidos , Animais , Linfócitos B/metabolismo , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Células Cultivadas , Evolução Clonal , Feminino , Humanos , Síndrome Hipereosinofílica/genética , Síndrome Hipereosinofílica/metabolismo , Janus Quinase 2/metabolismo , Leucemia/genética , Leucemia/metabolismo , Masculino , Camundongos , Oncogenes , Policitemia Vera/genética , Policitemia Vera/metabolismo
13.
Chem Soc Rev ; 49(9): 2617-2687, 2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32227030

RESUMO

Over the past decade, covalent kinase inhibitors (CKI) have seen a resurgence in drug discovery. Covalency affords a unique set of advantages as well as challenges relative to their non-covalent counterpart. After reversible protein target recognition and binding, covalent inhibitors irreversibly modify a proximal nucleophilic residue on the protein via reaction with an electrophile. To date, the acrylamide group remains the predominantly employed electrophile in CKI development, with its incorporation in the majority of clinical candidates and FDA approved covalent therapies. Nonetheless, in recent years considerable efforts have ensued to characterize alternative electrophiles that exhibit irreversible or reversibly covalent binding mechanisms towards cysteine thiols and other amino acids. This review article provides a comprehensive overview of CKIs reported in the literature over a decade period, 2007-2018. Emphasis is placed on the rationale behind warhead choice, optimization approach, and inhibitor design. Current FDA approved CKIs are also highlighted, in addition to a detailed analysis of the common trends and themes observed within the listed data set.


Assuntos
Inibidores Enzimáticos/farmacologia , Fosfotransferases/antagonistas & inibidores , Sítios de Ligação , Descoberta de Drogas , Inibidores Enzimáticos/química , Modelos Moleculares , Conformação Proteica
14.
J Biol Chem ; 294(15): 5854-5866, 2019 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-30755484

RESUMO

Extracellular deposition of ß-amyloid (Aß) peptides in the brain is a hallmark of Alzheimer's disease (AD). Upon ß-secretase-mediated cleavage of the ß C-terminal fragment (ß-CTF) from the Aß precursor protein, the γ-secretase complex produces the Aß peptides associated with AD. The familial T43I mutation within the transmembrane domain of the ß-CTF (also referred to as C99) increases the ratio between the Aß42 and Aß40 peptides largely due to a decrease in Aß40 formation. Aß42 is the principal component of amyloid deposits within the brain parenchyma, and an increase in the Aß42/Aß40 ratio is correlated with early-onset AD. Using NMR and FTIR spectroscopy, here we addressed how the T43I substitution influences the structure of C55, the minimal sequence containing the entire extracellular and transmembrane (TM) domains of C99 needed for γ-secretase processing. 13C NMR chemical shifts indicated that the T43I substitution increases helical structure within the TM domain of C55. These structural changes were associated with a shift of the C55 dimer to the monomer and an increase in the tilt of the TM helix relative to the membrane normal in the T43I mutant compared with that of WT C55. The A21G (Flemish) mutation was previously found to increase secreted Aß40 levels; here, we combined this mutation in the extracellular domain of C99 with T43I and observed that the T43I/A21G double mutant decreases Aß40 formation. We discuss how the observed structural changes in the T43I mutant may decrease Aß40 formation and increase the Aß42/Aß40 ratio.


Assuntos
Doença de Alzheimer , Secretases da Proteína Precursora do Amiloide/química , Peptídeos beta-Amiloides/química , Mutação de Sentido Incorreto , Fragmentos de Peptídeos/química , Peptídeos/química , Substituição de Aminoácidos , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Humanos , Ressonância Magnética Nuclear Biomolecular , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Peptídeos/genética , Peptídeos/metabolismo , Domínios Proteicos
15.
Blood ; 131(4): 421-425, 2018 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-29187379

RESUMO

The Janus kinase 3 (JAK3) tyrosine kinase is mutated in 10% to 16% of T-cell acute lymphoblastic leukemia (T-ALL) cases. JAK3 mutants induce constitutive JAK/STAT signaling and cause leukemia when expressed in the bone marrow cells of mice. Surprisingly, we observed that one third of JAK3-mutant T-ALL cases harbor 2 JAK3 mutations, some of which are monoallelic and others that are biallelic. Our data suggest that wild-type JAK3 competes with mutant JAK3 (M511I) for binding to the common γ chain and thereby suppresses its oncogenic potential. We demonstrate that JAK3 (M511I) can increase its limited oncogenic potential through the acquisition of an additional mutation in the mutant JAK3 allele. These double JAK3 mutants show increased STAT5 activation and increased potential to transform primary mouse pro-T cells to interleukin-7-independent growth and were not affected by wild-type JAK3 expression. These data extend our insight into the oncogenic properties of JAK3 mutations and provide an explanation of why progression of JAK3-mutant T-ALL cases can be associated with the accumulation of additional JAK3 mutations.


Assuntos
Janus Quinase 3/genética , Mutação Puntual , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Transdução de Sinais , Alelos , Linhagem Celular Tumoral , Humanos , Janus Quinase 3/metabolismo , Modelos Moleculares , Taxa de Mutação , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo
16.
Clin Chem Lab Med ; 58(12): 2141-2150, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-33064667

RESUMO

Objectives As severe acute respiratory syndrome coronavirus 2 (SARS-Cov-2) pandemic is increasing its victims on a global scale with recurring outbreaks, it remains of outmost importance to rapidly identify people requiring an intensive care unit (ICU) hospitalization. The aim of this study was to identify Coronavirus Disease 2019 (COVID-19) biomarkers, to investigate their correlation with disease severity and to evaluate their usefulness for follow-up. Methods Fifty patients diagnosed with SARS-Cov-2 were included in March 2020. Clinical and biological data were collected at admission, during hospitalization and one month after discharge. Patients were divided into two severity groups: non-ICU (28) and ICU and/or death (22) to stratify the risk. Results Blood parameters in COVID-19 patients at admission showed increased C-reactive protein (CRP) (100%), ferritin (92%), lactate dehydrogenase (LDH) (80%), white blood cell (WBC) count (26%) with lymphopenia (52%) and eosinopenia (98%). There were significant differences in levels of CRP, ferritin, D-dimers, fibrinogen, lymphocyte count, neutrophil count and neutrophil-to-lymphocyte ratio (NLR) among the two severity groups. Mapping of biomarker's kinetics distinguished early and late parameters. CRP, ferritin, LDH, lymphopenia and eosinopenia were present upon admission with a peak at the first week. Late biomarkers such as anemia, neutrophilia and elevated liver biomarkers appeared after one week with a peak at three weeks of hospitalization. Conclusions We confirmed that high-values of CRP, NLR, D-dimers, ferritin as well as lymphopenia and eosinopenia were consistently found and are good markers for risk stratification. Kinetics of these biomarkers correlate well with COVID-19 severity. Close monitoring of early and late biomarkers is crucial in the management of critical patients to avoid preventable deaths.


Assuntos
Infecções por Coronavirus/diagnóstico , Pneumonia Viral/diagnóstico , Adolescente , Adulto , Idoso , Biomarcadores/sangue , Contagem de Células Sanguíneas , COVID-19 , Infecções por Coronavirus/sangue , Feminino , Seguimentos , Hemostasia , Humanos , Masculino , Pessoa de Meia-Idade , Pandemias , Pneumonia Viral/sangue , Prognóstico , Adulto Jovem
17.
J Allergy Clin Immunol ; 144(1): 224-235, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30707971

RESUMO

BACKGROUND: Janus kinase (JAK) 2 plays pivotal roles in signaling by several cytokine receptors. The mutant JAK2 V617F is the most common molecular event associated with myeloproliferative neoplasms. Selective targeting of the mutant would be ideal for treating these pathologies by sparing essential JAK2 functions. OBJECTIVE: We characterize inhibitory strategies for JAK2 V617F and assess their effect on physiologic signaling by distinct cytokine receptors. METHODS: Through structure-guided mutagenesis, we assessed the role of key residues around F617 and used a combination of cellular and biochemical assays to measure the activity of JAKs in reconstituted cells. We also assessed the effect of several specific JAK2 V617F inhibitory mutations on receptor dimerization using the NanoBiT protein complementation approach. RESULTS: We identified a novel Janus kinase homology 2 (JH2) αC mutation, A598F, which is suggested to inhibit the aromatic stacking between F617 with F594 and F595. Like other JAK2 V617F inhibitory mutations, A598F decreased oncogenic activation and spared cytokine activation while preventing JAK2 V617F-promoted erythropoietin receptor dimerization. Surprisingly, A598F and other V617F-inhibiting mutations (F595A, E596R, and F537A) significantly impaired IFN-γ signaling. This was specific for IFN-γ because the inhibitory mutations preserved responses to ligands of a series of receptor complexes. Similarly, homologous mutations in JAK1 prevented signaling by IFN-γ. CONCLUSIONS: The JH2 αC region, which is required for JAK2 V617F hyperactivation, is crucial for relaying cytokine-induced signaling of the IFN-γ receptor. We discuss how strategies aiming to inhibit JAK2 V617F could be used for identifying inhibitors of IFN-γ signaling.


Assuntos
Janus Quinase 2/genética , Receptores de Citocinas/metabolismo , Animais , Linhagem Celular , Humanos , Janus Quinase 2/metabolismo , Camundongos , Mutação , Transdução de Sinais
18.
J Environ Manage ; 262: 110324, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32250805

RESUMO

We present a case of environmental transformation, in the Romanian Danube Delta, driven by the interplay of state power, technological intervention, geomorphological processes, and local practices. Through the presentation of a cartographic archive (1856-2017), together with participant observation and historical research, we detail the various stages of transformation in the deltaic environment and show the relative interplay of driving forces. We show that each transformation of the Delta is at the same time an imposition from without and an adaptation from within, a move of consolidation of state power and a resistance to being fully incorporated. We show how in the history of this particular environment, the main drivers of change pass from being of a geomorphological nature to being related to the use of state power. We detail three stages in the transformation of the delta, through which the conceptualization of, and interventions in, the environment, go from a borderland to be secured, to a rich exploitation ground, to an ecological marvel to be protected. We argue that this kind of analysis can be particularly relevant for the governance of protected areas.


Assuntos
Conservação dos Recursos Naturais , Ecologia , Meio Ambiente , Humanos , Política , Romênia
19.
Blood ; 140(4): 298-300, 2022 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-35900786
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA