Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Med Res Rev ; 42(5): 1822-1855, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35575048

RESUMO

Cyclophilin D (CypD) is a key regulator of mitochondrial permeability transition pore (mPTP) opening. This pathophysiological phenomenon is associated with the development of several human diseases, including ischemia-reperfusion injury and neurodegeneration. Blocking mPTP opening through CypD inhibition could be a novel and promising therapeutic approach for these conditions. While numerous CypD inhibitors have been discovered to date, none have been introduced into clinical practice, mostly owing to their high toxicity, unfavorable pharmacokinetics, and low selectivity for CypD over other cyclophilins. This review summarizes current knowledge of CypD inhibitors, with a particular focus on small-molecule compounds with regard to their in vitro activity, their selectivity for CypD, and their binding mode within the enzyme's active site. Finally, approaches for improving the molecular design of CypD inhibitors are discussed.


Assuntos
Doenças Mitocondriais , Proteínas de Transporte da Membrana Mitocondrial , Peptidil-Prolil Isomerase F , Peptidil-Prolil Isomerase F/antagonistas & inibidores , Humanos , Mitocôndrias/metabolismo , Doenças Mitocondriais/tratamento farmacológico , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Poro de Transição de Permeabilidade Mitocondrial
2.
J Enzyme Inhib Med Chem ; 37(1): 2605-2620, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36131624

RESUMO

Twenty-four novel compounds bearing tetrahydroacridine and N-propargyl moieties have been designed, synthesised, and evaluated in vitro for their anti-cholinesterase and anti-monoamine oxidase activities. Propargyltacrine 23 (IC50 = 21 nM) was the most potent acetylcholinesterase (AChE) inhibitor, compound 20 (IC50 = 78 nM) showed the best inhibitory human butyrylcholinesterase (hBChE) profile, and ligand 21 afforded equipotent and significant values on both ChEs (human AChE [hAChE]: IC50 = 0.095 ± 0.001 µM; hBChE: IC50 = 0.093 ± 0.003 µM). Regarding MAO inhibition, compounds 7, 15, and 25 demonstrated the highest inhibitory potential towards hMAO-B (IC50 = 163, 40, and 170 nM, respectively). In all, compounds 7, 15, 20, 21, 23, and 25 exhibiting the most balanced pharmacological profile, were submitted to permeability and cell viability tests. As a result, 7-phenoxy-N-(prop-2-yn-1-yl)-1,2,3,4-tetrahydroacridin-9-amine hydrochloride (15) has been identified as a permeable agent that shows a balanced pharmacological profile [IC50 (hAChE) = 1.472 ± 0.024 µM; IC50 (hBChE) = 0.659 ± 0.077 µM; IC50 (hMAO-B) = 40.39 ± 5.98 nM], and consequently, as a new hit-ligand that deserves further investigation, in particular in vivo analyses, as the preliminary cell viability test results reported here suggest that this is a relatively safe therapeutic agent.


Assuntos
Doença de Alzheimer , Butirilcolinesterase , Acetilcolinesterase/metabolismo , Doença de Alzheimer/tratamento farmacológico , Aminas , Butirilcolinesterase/metabolismo , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/uso terapêutico , Desenho de Fármacos , Humanos , Ligantes , Monoaminoxidase , Inibidores da Monoaminoxidase/farmacologia , Oxirredutases , Relação Estrutura-Atividade , Tacrina/uso terapêutico
3.
Bioorg Chem ; 107: 104596, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33421953

RESUMO

A series of tacrine - benzothiazole hybrids incorporate inhibitors of acetylcholinesterase (AChE), amyloid ß (Aß) aggregation and mitochondrial enzyme ABAD, whose interaction with Aß leads to mitochondrial dysfunction, into a single molecule. In vitro, several of 25 final compounds exerted excellent anti-AChE properties and interesting capabilities to block Aß aggregation. The best derivative of the series could be considered 10w that was found to be highly potent and selective towards AChE with the IC50 value in nanomolar range. Moreover, the same drug candidate exerted absolutely the best results of the series against ABAD, decreasing its activity by 23% at 100 µM concentration. Regarding the cytotoxicity profile of highlighted compound, it roughly matched that of its parent compound - 6-chlorotacrine. Finally, 10w was forwarded for in vivo scopolamine-induced amnesia experiment consisting of Morris Water Maze test, where it demonstrated mild procognitive effect. Taking into account all in vitro and in vivo data, highlighted derivative 10w could be considered as the lead structure worthy of further investigation.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Benzotiazóis/farmacologia , Colinérgicos/farmacologia , Inibidores Enzimáticos/farmacologia , Fármacos Neuroprotetores/farmacologia , Tacrina/farmacologia , 3-Hidroxiacil-CoA Desidrogenases/antagonistas & inibidores , 3-Hidroxiacil-CoA Desidrogenases/metabolismo , Acetilcolinesterase/metabolismo , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/antagonistas & inibidores , Peptídeos beta-Amiloides/metabolismo , Benzotiazóis/química , Colinérgicos/síntese química , Colinérgicos/química , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Estrutura Molecular , Fármacos Neuroprotetores/síntese química , Fármacos Neuroprotetores/química , Agregados Proteicos/efeitos dos fármacos , Relação Estrutura-Atividade , Tacrina/química
4.
Sensors (Basel) ; 21(16)2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34451018

RESUMO

Gait disorders accompany a number of neurological and musculoskeletal disorders that significantly reduce the quality of life. Motion sensors enable high-quality modelling of gait stereotypes. However, they produce large volumes of data, the evaluation of which is a challenge. In this publication, we compare different data reduction methods and classification of reduced data for use in clinical practice. The best accuracy achieved between a group of healthy individuals and patients with ataxic gait extracted from the records of 43 participants (23 ataxic, 20 healthy), forming 418 segments of straight gait pattern, is 98% by random forest classifier preprocessed by t-distributed stochastic neighbour embedding.


Assuntos
Transtornos Neurológicos da Marcha , Qualidade de Vida , Ataxia/diagnóstico , Marcha , Humanos
5.
Molecules ; 26(8)2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33918638

RESUMO

Gastrointestinal side effects of donepezil, including dyspepsia, nausea, vomiting or diarrhea, occur in 20-30% of patients. The pathogenesis of these dysmotility associated disorders has not been fully clarified yet. Pharmacokinetic parameters of donepezil and its active metabolite 6-O-desmethyldonepezil were investigated in experimental pigs with and without small intestinal injury induced by dextran sodium sulfate (DSS). Morphological features of this injury were evaluated by a video capsule endoscopy. The effect of a single and repeated doses of donepezil on gastric myoelectric activity was assessed. Both DSS-induced small intestinal injury and prolonged small intestinal transit time caused higher plasma concentrations of donepezil in experimental pigs. This has an important implication for clinical practice in humans, with a need to reduce doses of the drug if an underlying gastrointestinal disease is present. Donepezil had an undesirable impact on porcine myoelectric activity. This effect was further aggravated by DSS-induced small intestinal injury. These findings can explain donepezil-associated dyspepsia in humans.


Assuntos
Donepezila/farmacocinética , Trato Gastrointestinal/patologia , Trato Gastrointestinal/fisiopatologia , Indanos/metabolismo , Metaboloma , Complexo Mioelétrico Migratório , Piperidinas/metabolismo , Estômago/fisiopatologia , Animais , Endoscopia por Cápsula , Sulfato de Dextrana , Donepezila/química , Donepezila/farmacologia , Feminino , Trato Gastrointestinal/efeitos dos fármacos , Metaboloma/efeitos dos fármacos , Complexo Mioelétrico Migratório/efeitos dos fármacos , Estômago/efeitos dos fármacos , Suínos
6.
Bioorg Chem ; 103: 104179, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32891860

RESUMO

YNT-185 is the first known small molecule acting as orexin 2 receptor (OX2R) agonist with implication to narcolepsy treatment, served as a template scaffold in generating a small set of seven compounds with predictive affinity to OX2R. The design of the new small molecules was driven mostly by improving physicochemical properties of the parent drug YNT-185 in parallel with in silico studies, later suggesting their favorable binding modes within the active site of OX2R. We obtained seven new potential OX2R binders that were evaluated in vitro for their CNS availability, cytotoxicity, and behavior pattern on OX2R. Out of them, 15 emerged as the most potent modulator of OX2R, which, contrary to YNT-185, displayed inverse mode of action, i.e. antagonist profile. 15 was also submitted to an in vivo experiment revealing its ability to permeate through BBB into the brain with a short half-life.


Assuntos
Compostos de Anilina/uso terapêutico , Benzamidas/uso terapêutico , Receptores de Orexina/uso terapêutico , Distúrbios do Início e da Manutenção do Sono/tratamento farmacológico , Compostos de Anilina/farmacologia , Benzamidas/farmacologia , Humanos , Estrutura Molecular
7.
J Enzyme Inhib Med Chem ; 35(1): 478-488, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31910701

RESUMO

The series of symmetrical and unsymmetrical isoquinolinium-5-carbaldoximes was designed and prepared for cholinesterase reactivation purposes. The novel compounds were evaluated for intrinsic acetylcholinesterase (AChE) or butyrylcholinesterase (BChE) inhibition, when the majority of novel compounds resulted with high inhibition of both enzymes and only weak inhibitors were selected for reactivation experiments on human AChE or BChE inhibited by sarin, VX, or paraoxon. The AChE reactivation for all used organophosphates was found negligible if compared to the reactivation ability of obidoxime. Importantly, two compounds were found to reactivate BChE inhibited by sarin or VX better to obidoxime at human attainable concentration. One compound resulted as better reactivator of NEMP (VX surrogate)-inhibited BChE than obidoxime. The in vitro results were further rationalized by molecular docking studies showing future directions on designing potent BChE reactivators.


Assuntos
Acetilcolinesterase/efeitos dos fármacos , Butirilcolinesterase/efeitos dos fármacos , Reativadores da Colinesterase/farmacologia , Isoquinolinas/síntese química , Isoquinolinas/farmacologia , Inibidores da Colinesterase/farmacologia , Humanos , Isoquinolinas/química , Simulação de Acoplamento Molecular
8.
Int J Mol Sci ; 21(6)2020 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-32192199

RESUMO

Human 17ß-hydroxysteroid dehydrogenase type 10 is a multifunctional protein involved in many enzymatic and structural processes within mitochondria. This enzyme was suggested to be involved in several neurological diseases, e.g., mental retardation, Parkinson's disease, or Alzheimer's disease, in which it was shown to interact with the amyloid-beta peptide. We prepared approximately 60 new compounds based on a benzothiazolyl scaffold and evaluated their inhibitory ability and mechanism of action. The most potent inhibitors contained 3-chloro and 4-hydroxy substitution on the phenyl ring moiety, a small substituent at position 6 on the benzothiazole moiety, and the two moieties were connected via a urea linker (4at, 4bb, and 4bg). These compounds exhibited IC50 values of 1-2 µM and showed an uncompetitive mechanism of action with respect to the substrate, acetoacetyl-CoA. These uncompetitive benzothiazolyl inhibitors of 17ß-hydroxysteroid dehydrogenase type 10 are promising compounds for potential drugs for neurodegenerative diseases that warrant further research and development.


Assuntos
3-Hidroxiacil-CoA Desidrogenases/antagonistas & inibidores , Benzotiazóis/química , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Ureia/química , Ureia/farmacologia , 3-Hidroxiacil-CoA Desidrogenases/química , Doença de Alzheimer/tratamento farmacológico , Ativação Enzimática , Humanos , Cinética , Estrutura Molecular , Proteínas Recombinantes , Relação Estrutura-Atividade
9.
Molecules ; 25(9)2020 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-32403238

RESUMO

Nosocomial infections, which greatly increase morbidity among hospitalized patients, together with growing antibiotic resistance still encourage many researchers to search for novel antimicrobial compounds. Picolinium salts with different lengths of alkyl chains (C12, C14, C16) were prepared by Menshutkin-like reaction and evaluated with respect to their biological activity, i.e., lipophilicity and critical micellar concentration. Picolinium salts with C14 and C16 side chains achieved similar or even better results when in terms of antimicrobial efficacy than benzalkoniums; notably, their fungicidal efficiency was substantially more potent. The position of the methyl substituent on the aromatic ring does not seem to affect antimicrobial activity, in contrast to the effect of length of the N-alkyl chain. Concurrently, picolinium salts exhibited satisfactory low cytotoxicity against mammalian cells, i.e., lower than that of benzalkonium compounds, which are considered as safe.


Assuntos
Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Antivirais/farmacologia , Ácidos Picolínicos/química , Ácidos Picolínicos/farmacologia , Compostos de Amônio Quaternário/química , Animais , Células CHO , Candida/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cricetulus , Fungos/efeitos dos fármacos , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Herpesvirus Humano 3/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Ácidos Picolínicos/síntese química , Compostos de Amônio Quaternário/farmacologia , Relação Estrutura-Atividade , Tensoativos/química , Tensoativos/farmacologia
10.
Med Res Rev ; 39(3): 961-975, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30426515

RESUMO

Narcolepsy is a rare, chronic neurological disease characterized by excessive daytime sleepiness, cataplexy, vivid hallucinations, and sleep paralysis. Narcolepsy occurs in approximately 1 of 3000 people, affecting mainly adolescents aged 15 to 30 years. Recently, people with narcolepsy were shown to exhibit extensive orexin/hypocretin neuronal loss. The orexin system regulates sleep/wake control via complex interactions with monoaminergic, cholinergic and GABA-ergic neuronal systems. Currently, no cure for narcolepsy exists, but some symptoms can be controlled with medication (eg, stimulants, antidepressants, etc). Orexin supplementation represents a more sophisticated way to treat narcolepsy because it addresses the underlying cause of the disease and not just the symptoms. Research on orexin supplementation in the treatment of sleep disorders has strongly increased over the past two decades. This review focuses on a brief description of narcolepsy, the mechanisms by which the orexin system regulates sleep/wake cycles, and finally, possible therapeutic options based on orexin supplementation in animal models and patients with narcolepsy.


Assuntos
Narcolepsia/tratamento farmacológico , Orexinas/uso terapêutico , Animais , Transplante de Células , Terapia Genética , Humanos , Narcolepsia/genética , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia
11.
Bioorg Chem ; 82: 204-210, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30326402

RESUMO

We report the design, synthesis and biological evaluation of 17 novel 8-aryl-2-morpholino-3,4-dihydroquinazoline derivatives based on the standard model of DNA-PK and PI3K inhibitors. Novel compounds are sub-divided into two series where the second series of five derivatives was designed to have a better solubility profile over the first one. A combination of in vitro and in silico techniques suggested a plausible synergistic effect with doxorubicin of the most potent compound 14d on cell proliferation via DNA-PK and poly(ADP-ribose) polymerase-1 (PARP-1) inhibition, while alone having a negligible effect on cell proliferation.


Assuntos
Antineoplásicos/farmacologia , Doxorrubicina/farmacologia , Inibidores Enzimáticos/farmacologia , Morfolinas/farmacologia , Quinazolinonas/farmacologia , Animais , Animais não Endogâmicos , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Proteína Quinase Ativada por DNA/antagonistas & inibidores , Desenho de Fármacos , Sinergismo Farmacológico , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/toxicidade , Feminino , Células HT29 , Humanos , Camundongos , Morfolinas/síntese química , Morfolinas/toxicidade , Proteínas Nucleares/antagonistas & inibidores , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Quinazolinonas/síntese química , Quinazolinonas/toxicidade
12.
Molecules ; 24(7)2019 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-30959739

RESUMO

In recent studies, several alkaloids acting as cholinesterase inhibitors were isolated from Corydalis cava (Papaveraceae). Inhibitory activities of (+)-thalictricavine (1) and (+)-canadine (2) on human acetylcholinesterase (hAChE) and butyrylcholinesterase (hBChE) were evaluated with the Ellman's spectrophotometric method. Molecular modeling was used to inspect the binding mode of compounds into the active site pocket of hAChE. The possible permeability of 1 and 2 through the blood⁻brain barrier (BBB) was predicted by the parallel artificial permeation assay (PAMPA) and logBB calculation. In vitro, 1 and 2 were found to be selective hAChE inhibitors with IC50 values of 0.38 ± 0.05 µM and 0.70 ± 0.07 µM, respectively, but against hBChE were considered inactive (IC50 values > 100 µM). Furthermore, both alkaloids demonstrated a competitive-type pattern of hAChE inhibition and bind, most probably, in the same AChE sub-site as its substrate. In silico docking experiments allowed us to confirm their binding poses into the active center of hAChE. Based on the PAMPA and logBB calculation, 2 is potentially centrally active, but for 1 BBB crossing is limited. In conclusion, 1 and 2 appear as potential lead compounds for the treatment of Alzheimer's disease.


Assuntos
Acetilcolinesterase/efeitos dos fármacos , Alcaloides/química , Butirilcolinesterase/efeitos dos fármacos , Inibidores da Colinesterase/farmacologia , Acetilcolinesterase/química , Alcaloides/farmacologia , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/enzimologia , Berberina/análogos & derivados , Berberina/química , Berberina/farmacologia , Transporte Biológico/efeitos dos fármacos , Barreira Hematoencefálica/efeitos dos fármacos , Butirilcolinesterase/química , Inibidores da Colinesterase/química , Simulação por Computador , Corydalis/química , Dissacarídeos/química , Dissacarídeos/farmacologia , Humanos , Modelos Moleculares , Nitrocompostos/química , Nitrocompostos/farmacologia , Ligação Proteica/efeitos dos fármacos
13.
J Enzyme Inhib Med Chem ; 33(1): 583-606, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29529892

RESUMO

Alzheimer's disease is debilitating neurodegenerative disorder in the elderly. Current therapy relies on administration of acetylcholinesterase inhibitors (AChEIs) -donepezil, rivastigmine, galantamine, and N-methyl-d-aspartate receptor antagonist memantine. However, their therapeutic effect is only short-term and stabilizes cognitive functions for up to 2 years. Given this drawback together with other pathological hallmarks of the disease taken into consideration, novel approaches have recently emerged to better cope with AD onset or its progression. One such strategy implies broadening the biological profile of AChEIs into so-called multi-target directed ligands (MTDLs). In this review article, we made comprehensive literature survey emphasising on donepezil template which was structurally converted into plethora of MTLDs preserving anti-cholinesterase effect and, at the same time, escalating the anti-oxidant potential, which was reported as a crucial role in the pathogenesis of the Alzheimer's disease.


Assuntos
Acetilcolinesterase/metabolismo , Doença de Alzheimer/tratamento farmacológico , Antioxidantes/farmacologia , Inibidores da Colinesterase/farmacologia , Indanos/farmacologia , Piperidinas/farmacologia , Doença de Alzheimer/metabolismo , Antioxidantes/química , Inibidores da Colinesterase/química , Donepezila , Humanos , Indanos/química , Estrutura Molecular , Piperidinas/química , Relação Estrutura-Atividade
14.
Molecules ; 23(11)2018 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-30423961

RESUMO

The neuropeptides, orexin A and orexin B (also known as hypocretins), are produced in hypothalamic neurons and belong to ligands for orphan G protein-coupled receptors. Generally, the primary role of orexins is to act as excitatory neurotransmitters and regulate the sleep process. Lack of orexins may lead to sleep disorder narcolepsy in mice, dogs, and humans. Narcolepsy is a neurological disorder of alertness characterized by a decrease of ability to manage sleep-wake cycles, excessive daytime sleepiness, and other symptoms, such as cataplexy, vivid hallucinations, and paralysis. Thus, the discovery of orexin receptors, modulators, and their causal implication in narcolepsy is the most important advance in sleep-research. The presented work is focused on the evaluation of compounds L1⁻L11 selected by structure-based virtual screening for their ability to modulate orexin receptor type 2 (OX2R) in comparison with standard agonist orexin-A together with their blood-brain barrier permeability and cytotoxicity. We can conclude that the studied compounds possess an affinity towards the OX2R. However, the compounds do not have intrinsic activity and act as the antagonists of this receptor. It was shown that L4 was the most potent antagonistic ligand to orexin A and displayed an IC50 of 2.2 µM, offering some promise mainly for the treatment of insomnia.


Assuntos
Simulação por Computador , Desenho de Fármacos , Modelos Moleculares , Antagonistas dos Receptores de Orexina/química , Receptores de Orexina/química , Orexinas/química , Animais , Sítios de Ligação , Células CHO , Cricetulus , Concentração Inibidora 50 , Ligantes , Conformação Molecular , Estrutura Molecular , Antagonistas dos Receptores de Orexina/farmacologia , Orexinas/farmacologia , Ligação Proteica , Relação Quantitativa Estrutura-Atividade
15.
Molecules ; 23(1)2018 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-29300367

RESUMO

In order to identify novel lead structures for human toll-like receptor 4 (hTLR4) modulation virtual high throughput screening by a peta-flops-scale supercomputer has been performed. Based on the in silico studies, a series of 12 compounds related to tryptamine was rationally designed to retain suitable molecular geometry for interaction with the hTLR4 binding site as well as to satisfy general principles of drug-likeness. The proposed compounds were synthesized, and tested by in vitro and ex vivo experiments, which revealed that several of them are capable to stimulate hTLR4 in vitro up to 25% activity of Monophosphoryl lipid A. The specific affinity of the in vitro most potent substance was confirmed by surface plasmon resonance direct-binding experiments. Moreover, two compounds from the series show also significant ability to elicit production of interleukin 6.


Assuntos
Adjuvantes Imunológicos/química , Adjuvantes Imunológicos/farmacologia , Ensaios de Triagem em Larga Escala/métodos , Relação Estrutura-Atividade , Receptor 4 Toll-Like/agonistas , Adjuvantes Imunológicos/metabolismo , Animais , Sítios de Ligação , Células CHO , Simulação por Computador , Cricetulus , Humanos , Concentração Inibidora 50 , Interleucina-6/sangue , Ligantes , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ressonância de Plasmônio de Superfície , Receptor 4 Toll-Like/metabolismo , Triptaminas/química , Vacinas
16.
Bioorg Med Chem ; 25(3): 1143-1152, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28082069

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disorder associated with an excessive accumulation of amyloid-beta peptide (Aß). Based on the multifactorial nature of AD, preparation of multi-target-directed ligands presents a viable option to address more pathological events at one time. A novel class of asymmetrical disubstituted indolyl thioureas have been designed and synthesized to interact with monoamine oxidase (MAO) and/or amyloid-binding alcohol dehydrogenase (ABAD). The design combines the features of known MAO inhibitors scaffolds (e.g. rasagiline or ladostigil) and a frentizole moiety with potential to interact with ABAD. Evaluation against MAO identified several compounds that inhibited in the low to moderate micromolar range. The most promising compound (19) inhibited human MAO-A and MAO-B with IC50 values of 6.34µM and 0.30µM, respectively. ABAD activity evaluation did not show any highly potent compound, but the compound series allowed identification of structural features to assist the future development of ABAD inhibitors. Finally, several of the compounds were found to be potent inhibitors of horseradish peroxidase (HRP), preventing the use of the Amplex™ Red assay to detect hydrogen peroxide produced by MAO, highlighting the need for serious precautions when using an enzyme-coupled assay.


Assuntos
3-Hidroxiacil-CoA Desidrogenases/antagonistas & inibidores , Doença de Alzheimer/tratamento farmacológico , Benzotiazóis/farmacologia , Inibidores Enzimáticos/farmacologia , Monoaminoxidase/metabolismo , Compostos de Fenilureia/farmacologia , Tioureia/farmacologia , 3-Hidroxiacil-CoA Desidrogenases/metabolismo , Doença de Alzheimer/metabolismo , Benzotiazóis/química , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Estrutura Molecular , Compostos de Fenilureia/química , Relação Estrutura-Atividade , Tioureia/síntese química , Tioureia/química
17.
Molecules ; 22(6)2017 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-28621747

RESUMO

A novel series of 6-chlorotacrine-scutellarin hybrids was designed, synthesized and the biological activity as potential anti-Alzheimer's agents was assessed. Their inhibitory activity towards human acetylcholinesterase (hAChE) and human butyrylcholinesterase (hBChE), antioxidant activity, ability to cross the blood-brain barrier (BBB) and hepatotoxic profile were evaluated in vitro. Among these compounds, hybrid K1383, bearing two methylene tether between two basic scaffolds, was found to be very potent hAChE inhibitor (IC50 = 1.63 nM). Unfortunately, none of the hybrids displayed any antioxidant activity (EC50 ≥ 500 µM). Preliminary data also suggests a comparable hepatotoxic profile with 6-Cl-THA (established on a HepG2 cell line). Kinetic studies performed on hAChE with the most active compound in the study, K1383, pointed out to a mixed, non-competitive enzyme inhibition. These findings were further corroborated by docking studies.


Assuntos
Apigenina/química , Inibidores da Colinesterase/química , Inibidores da Colinesterase/farmacologia , Glucuronatos/química , Tacrina/análogos & derivados , Acetilcolinesterase/metabolismo , Doença de Alzheimer/enzimologia , Barreira Hematoencefálica/metabolismo , Butirilcolinesterase/metabolismo , Inibidores da Colinesterase/síntese química , Desenho de Fármacos , Ativação Enzimática/efeitos dos fármacos , Humanos , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade , Tacrina/química
18.
Molecules ; 22(8)2017 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-28788095

RESUMO

Tacrine (THA), the first clinically effective acetylcholinesterase (AChE) inhibitor and the first approved drug for the treatment of Alzheimer's disease (AD), was withdrawn from the market due to its side effects, particularly its hepatotoxicity. Nowadays, THA serves as a valuable scaffold for the design of novel agents potentially applicable for AD treatment. One such compound, namely 7-methoxytacrine (7-MEOTA), exhibits an intriguing profile, having suppressed hepatotoxicity and concomitantly retaining AChE inhibition properties. Another interesting class of AChE inhibitors represents Huprines, designed by merging two fragments of the known AChE inhibitors-THA and (-)-huperzine A. Several members of this compound family are more potent human AChE inhibitors than the parent compounds. The most promising are so-called huprines X and Y. Here, we report the design, synthesis, biological evaluation, and in silico studies of 2-methoxyhuprine that amalgamates structural features of 7-MEOTA and huprine Y in one molecule.


Assuntos
Aminoquinolinas/química , Aminoquinolinas/farmacologia , Descoberta de Drogas , Acetilcolinesterase , Doença de Alzheimer/tratamento farmacológico , Aminoquinolinas/síntese química , Sítios de Ligação , Barreira Hematoencefálica/metabolismo , Butirilcolinesterase , Domínio Catalítico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Inibidores da Colinesterase/química , Inibidores da Colinesterase/farmacologia , Desenho de Fármacos , Ativação Enzimática/efeitos dos fármacos , Compostos Heterocíclicos de 4 ou mais Anéis/química , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Humanos , Hidrólise , Concentração Inibidora 50 , Modelos Moleculares , Conformação Molecular , Estrutura Molecular , Permeabilidade , Ligação Proteica , Relação Estrutura-Atividade , Tacrina/análogos & derivados , Tacrina/química , Tacrina/farmacologia
19.
Bioorg Med Chem Lett ; 26(15): 3675-8, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27287370

RESUMO

Amyloid-beta peptide (Aß) has been recognized to interact with numerous proteins, which may lead to pathological changes in cell metabolism of Alzheimer's disease (AD) patients. One such known metabolic enzyme is mitochondrial amyloid-binding alcohol dehydrogenase (ABAD), also known as 17ß-hydroxysteroid dehydrogenase type 10 (17ß-HSD10). Altered enzyme function caused by the Aß-ABAD interaction, was previously shown to cause mitochondrial distress and a consequent cytotoxic effect, therefore providing a feasible target in AD drug development. Based on previous frentizole derivatives studies, we report two novel series of benzothiazolyl ureas along with novel insights into the structure and activity relationships for inhibition of ABAD. Two compounds (37, 39) were identified as potent ABAD inhibitors, where compound 39 exhibited comparable cytotoxicity with the frentizole standard; however, one-fold higher cytotoxicity than the parent riluzole standard. The calculated and experimental physical chemical properties of the most potent compounds showed promising features for blood-brain barrier penetration.


Assuntos
3-Hidroxiacil-CoA Desidrogenases/antagonistas & inibidores , Doença de Alzheimer/tratamento farmacológico , Benzotiazóis/farmacologia , Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Ureia/farmacologia , 3-Hidroxiacil-CoA Desidrogenases/metabolismo , Animais , Benzotiazóis/química , Células CHO , Sobrevivência Celular/efeitos dos fármacos , Cricetulus , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Ureia/análogos & derivados , Ureia/química
20.
Bioorg Med Chem ; 24(4): 841-8, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26774252

RESUMO

In the present paper, we describe the synthesis of a new group of 5-hydroxyisoquinolinium salts with different lengths of alkyl side-chain (C10-C18), and their chromatographic analysis and biological assay for in vitro activity against bacterial and fungal strains. We compare the lipophilicity and efficacy of hydroxylated isoquinolinium salts with the previously published (non-hydroxylated) isoquinolinium salts from the point of view of antibacterial and antifungal versatility and cytotoxic safety. Compound 11 (C18) had to be excluded from the testing due to its low solubility. Compounds 9 and 10 (C14, C16) showed only moderate efficacy against G+ bacteria, notably with excellent potency against Staphyloccocus aureus, but no effect against G- bacteria. In contrast, non-hydroxylated isoquinolinium salts showed excellent antimicrobial efficacy within the whole series, particularly 14 (C14) against G+ strains and 15 (C16) against fungi. The electronic properties and desolvation energies of 5-hydroxyisoquinolinium and isoquinolinium salts were studied by quantum-chemistry calculations employing B3LYP/6-311++G(d,p) method and an implicit water-solvent simulation model (SCRF). Despite the positive mesomeric effect of the hydroxyl moiety reducing the electron density of the quaternary nitrogen, it is probably the higher lipophilicity and lower desolvation energy of isoquinolinium salts, which is responsible for enhanced antimicrobial versatility and efficacy.


Assuntos
Antibacterianos/síntese química , Antifúngicos/síntese química , Isoquinolinas/síntese química , Antibacterianos/farmacologia , Antifúngicos/farmacologia , Fungos/efeitos dos fármacos , Fungos/crescimento & desenvolvimento , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/crescimento & desenvolvimento , Bactérias Gram-Positivas/efeitos dos fármacos , Bactérias Gram-Positivas/crescimento & desenvolvimento , Isoquinolinas/farmacologia , Testes de Sensibilidade Microbiana , Modelos Moleculares , Teoria Quântica , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA