Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Cell ; 186(15): 3148-3165.e20, 2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37413990

RESUMO

Chimeric antigen receptor (CAR) T cell therapy effectively treats human cancer, but the loss of the antigen recognized by the CAR poses a major obstacle. We found that in vivo vaccine boosting of CAR T cells triggers the engagement of the endogenous immune system to circumvent antigen-negative tumor escape. Vaccine-boosted CAR T promoted dendritic cell (DC) recruitment to tumors, increased tumor antigen uptake by DCs, and elicited the priming of endogenous anti-tumor T cells. This process was accompanied by shifts in CAR T metabolism toward oxidative phosphorylation (OXPHOS) and was critically dependent on CAR-T-derived IFN-γ. Antigen spreading (AS) induced by vaccine-boosted CAR T enabled a proportion of complete responses even when the initial tumor was 50% CAR antigen negative, and heterogeneous tumor control was further enhanced by the genetic amplification of CAR T IFN-γ expression. Thus, CAR-T-cell-derived IFN-γ plays a critical role in promoting AS, and vaccine boosting provides a clinically translatable strategy to drive such responses against solid tumors.


Assuntos
Vacinas Anticâncer , Neoplasias , Receptores de Antígenos Quiméricos , Humanos , Neoplasias/terapia , Linfócitos T , Imunoterapia Adotiva , Receptores de Antígenos de Linfócitos T/metabolismo
2.
Nat Mater ; 21(6): 710-720, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35606429

RESUMO

Activation of the innate immune STimulator of INterferon Genes (STING) pathway potentiates antitumour immunity, but systemic delivery of STING agonists to tumours is challenging. We conjugated STING-activating cyclic dinucleotides (CDNs) to PEGylated lipids (CDN-PEG-lipids; PEG, polyethylene glycol) via a cleavable linker and incorporated them into lipid nanodiscs (LNDs), which are discoid nanoparticles formed by self-assembly. Compared to state-of-the-art liposomes, intravenously administered LNDs carrying CDN-PEG-lipid (LND-CDNs) exhibited more efficient penetration of tumours, exposing the majority of tumour cells to STING agonist. A single dose of LND-CDNs induced rejection of established tumours, coincident with immune memory against tumour rechallenge. Although CDNs were not directly tumoricidal, LND-CDN uptake by cancer cells correlated with robust T-cell activation by promoting CDN and tumour antigen co-localization in dendritic cells. LNDs thus appear promising as a vehicle for robust delivery of compounds throughout solid tumours, which can be exploited for enhanced immunotherapy.


Assuntos
Nanopartículas , Neoplasias , Humanos , Imunoterapia , Lipídeos , Proteínas de Membrana/metabolismo , Proteínas de Membrana/farmacologia , Nanopartículas/uso terapêutico , Neoplasias/tratamento farmacológico
3.
Proc Natl Acad Sci U S A ; 116(21): 10482-10487, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-31068472

RESUMO

A major obstacle to curing chronic myeloid leukemia (CML) is the intrinsic resistance of CML stem cells (CMLSCs) to the drug imatinib mesylate (IM). Prosurvival genes that are preferentially expressed in CMLSCs compared with normal hematopoietic stem cells (HSCs) represent potential therapeutic targets for selectively eradicating CMLSCs. However, the discovery of such preferentially expressed genes has been hampered by the inability to completely separate CMLSCs from HSCs, which display a very similar set of surface markers. To overcome this challenge, and to minimize confounding effects of individual differences in gene expression profiles, we performed single-cell RNA-seq on CMLSCs and HSCs that were isolated from the same patient and distinguished based on the presence or absence of BCR-ABL. Among genes preferentially expressed in CMLSCs is PIM2, which encodes a prosurvival serine-threonine kinase that phosphorylates and inhibits the proapoptotic protein BAD. We show that IM resistance of CMLSCs is due, at least in part, to maintenance of BAD phosphorylation by PIM2. We find that in CMLSCs, PIM2 expression is promoted by both a BCR-ABL-dependent (IM-sensitive) STAT5-mediated pathway and a BCR-ABL-independent (IM-resistant) STAT4-mediated pathway. Combined treatment with IM and a PIM inhibitor synergistically increases apoptosis of CMLSCs, suppresses colony formation, and significantly prolongs survival in a mouse CML model, with a negligible effect on HSCs. Our results reveal a therapeutically targetable mechanism of IM resistance in CMLSCs. The experimental approach that we describe can be generally applied to other malignancies that harbor oncogenic fusion proteins or other characteristic genetic markers.


Assuntos
Compostos de Bifenilo/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Células-Tronco Neoplásicas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Tiazolidinas/uso terapêutico , Animais , Ensaios de Seleção de Medicamentos Antitumorais , Proteínas de Fusão bcr-abl/metabolismo , Humanos , Mesilato de Imatinib , Leucemia Experimental/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Camundongos , Terapia de Alvo Molecular , Fosforilação , Inibidores de Proteínas Quinases , Fatores de Transcrição STAT/metabolismo , Proteína de Morte Celular Associada a bcl/metabolismo
4.
Blood ; 134(22): 1960-1972, 2019 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-31515251

RESUMO

Leukemia stem cells are a rare population with a primitive progenitor phenotype that can initiate, sustain, and recapitulate leukemia through a poorly understood mechanism of self-renewal. Here, we report that Krüppel-like factor 4 (KLF4) promotes disease progression in a murine model of chronic myeloid leukemia (CML)-like myeloproliferative neoplasia by repressing an inhibitory mechanism of preservation in leukemia stem/progenitor cells with leukemia-initiating capacity. Deletion of the Klf4 gene severely abrogated the maintenance of BCR-ABL1(p210)-induced CML by impairing survival and self-renewal in BCR-ABL1+ CD150+ lineage-negative Sca-1+ c-Kit+ leukemic cells. Mechanistically, KLF4 repressed the Dyrk2 gene in leukemic stem/progenitor cells; thus, loss of KLF4 resulted in elevated levels of dual-specificity tyrosine-(Y)-phosphorylation-regulated kinase 2 (DYRK2), which were associated with inhibition of survival and self-renewal via depletion of c-Myc protein and p53 activation. In addition to transcriptional regulation, stabilization of DYRK2 protein by inhibiting ubiquitin E3 ligase SIAH2 with vitamin K3 promoted apoptosis and abrogated self-renewal in murine and human CML stem/progenitor cells. Altogether, our results suggest that DYRK2 is a molecular checkpoint controlling p53- and c-Myc-mediated regulation of survival and self-renewal in CML cells with leukemic-initiating capacity that can be targeted with small molecules.


Assuntos
Fatores de Transcrição Kruppel-Like/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Células-Tronco Neoplásicas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Transdução de Sinais , Animais , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Proteínas de Fusão bcr-abl/genética , Proteínas de Fusão bcr-abl/metabolismo , Deleção de Genes , Humanos , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Camundongos , Camundongos Knockout , Células-Tronco Neoplásicas/patologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Tirosina Quinases/genética , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Vitamina K 3/farmacologia , Quinases Dyrk
5.
Proc Natl Acad Sci U S A ; 114(44): 11751-11756, 2017 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-29078326

RESUMO

Developing tools to accurately predict the clinical prevalence of drug-resistant mutations is a key step toward generating more effective therapeutics. Here we describe a high-throughput CRISPR-Cas9-based saturated mutagenesis approach to generate comprehensive libraries of point mutations at a defined genomic location and systematically study their effect on cell growth. As proof of concept, we mutagenized a selected region within the leukemic oncogene BCR-ABL1 Using bulk competitions with a deep-sequencing readout, we analyzed hundreds of mutations under multiple drug conditions and found that the effects of mutations on growth in the presence or absence of drug were critical for predicting clinically relevant resistant mutations, many of which were cancer adaptive in the absence of drug pressure. Using this approach, we identified all clinically isolated BCR-ABL1 mutations and achieved a prediction score that correlated highly with their clinical prevalence. The strategy described here can be broadly applied to a variety of oncogenes to predict patient mutations and evaluate resistance susceptibility in the development of new therapeutics.


Assuntos
Sistemas CRISPR-Cas/genética , Resistencia a Medicamentos Antineoplásicos/genética , Mutagênese/genética , Animais , Antineoplásicos/farmacologia , Sistemas CRISPR-Cas/efeitos dos fármacos , Linhagem Celular Tumoral , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/efeitos dos fármacos , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Proteínas de Fusão bcr-abl/genética , Leucemia/tratamento farmacológico , Leucemia/genética , Camundongos , Mutagênese/efeitos dos fármacos , Oncogenes/genética , Mutação Puntual/efeitos dos fármacos , Mutação Puntual/genética
6.
Proc Natl Acad Sci U S A ; 110(6): 2312-7, 2013 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-23345428

RESUMO

Hematopoietic stem cells (HSCs) are the source of all blood lineages, and HSCs must balance quiescence, self-renewal, and differentiation to meet lifelong needs for blood cell development. Transformation of HSCs by the breakpoint cluster region-ABL tyrosine kinase (BCR-ABL) oncogene causes chronic myelogenous leukemia (CML). The E-twenty six (ets) transcription factor GA binding protein (GABP) is a tetrameric transcription factor complex that contains GABPα and GABPß proteins. Deletion in bone marrow of Gabpa, the gene that encodes the DNA-binding component, caused cell cycle arrest in HSCs and profound loss of hematopoietic progenitor cells. Loss of Gabpα prevented development of CML, although mice continued to generate BCR-ABL-expressing Gabpα-null cells for months that were serially transplantable and contributed to all lineages in secondary recipients. A bioinformatic screen identified the serine-threonine kinase protein kinase D2 (PRKD2) as a potential effector of GABP in HSCs. Prkd2 expression was markedly reduced in Gabpα-null HSCs and progenitor cells. Reduced expression of PRKD2 or pharmacologic inhibition decreased cell cycling, and PRKD2 rescued growth of Gabpα-null BCR-ABL-expressing cells. Thus, GABP is required for HSC cell cycle entry and CML development through its control of PRKD2. This offers a potential therapeutic target in leukemia.


Assuntos
Fator de Transcrição de Proteínas de Ligação GA/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/etiologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Proteínas Quinases/metabolismo , Animais , Antineoplásicos/farmacologia , Benzamidas , Ciclo Celular , Fator de Transcrição de Proteínas de Ligação GA/deficiência , Fator de Transcrição de Proteínas de Ligação GA/genética , Expressão Gênica , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/patologia , Mesilato de Imatinib , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Camundongos , Camundongos Transgênicos , Piperazinas/farmacologia , Proteína Quinase D2 , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases/genética , Pirimidinas/farmacologia
7.
Sci Rep ; 14(1): 13770, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877208

RESUMO

Indoor inspection robots operating in occupied buildings need to minimize disturbance to occupants and access high areas of a room and cramped spaces obstructed by obstacles for higher inspection coverage. However, existing indoor inspection robots are still unable to meet these requirements. This paper aims to explore the feasibility of applying wall-climbing robots to address these requirements. To this end, we propose a small-sized wall-climbing robot prototype that can move on common indoor surfaces. We extend the proposed prototype to support thermographic inspection by integrating thermal imaging technology into it. Experiment results show that the proposed robot prototype can reach more wall and floor areas for inspection than previously developed indoor inspection robots. It has also been demonstrated that the reduced size and the wall-climbing ability allow the robot to largely avoid human activity areas, thereby reducing disturbance to occupants. This study represents the first attempt to introduce wall-climbing robots into the indoor inspection domain and provides the initial validation of their advantages over existing indoor inspection robots regarding improving inspection coverage and minimizing disturbance to occupants. The findings in this study can provide valuable insights for the future design, selection and application of robotic systems for indoor inspection tasks.

8.
Artigo em Inglês | MEDLINE | ID: mdl-38911455

RESUMO

Crosstalk between dendritic cells (DCs) and T cells plays a crucial role in modulating immune responses in natural and pathological conditions. DC-T cell crosstalk is achieved through contact-dependent (i.e., immunological synapse) and contact-independent mechanisms (i.e., cytokines). Activated DCs upregulate co-stimulatory signals and secrete proinflammatory cytokines to orchestrate T cell activation and differentiation. Conversely, activated T helper cells "license" DCs towards maturation, while regulatory T cells (Tregs) silence DCs to elicit tolerogenic immunity. Strategies to efficiently modulate the DC-T cell crosstalk can be harnessed to promote immune activation for cancer immunotherapy or immune tolerance for the treatment of autoimmune diseases. Here, we review the natural crosstalk mechanisms between DC and T cells. We highlight bioengineering approaches to modulate DC-T cell crosstalk, including conventional vaccines, synthetic vaccines, and DC-mimics, and key seminal studies leveraging these approaches to steer immune response for the treatment of cancer and autoimmune diseases.

9.
PLoS One ; 19(5): e0303145, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38728268

RESUMO

Water stress can adversely affect seed germination and plant growth. Seed osmopriming is a pre-sowing treatment in which seeds are soaked in osmotic solutions to undergo the first stage of germination prior to radicle protrusion. Seed osmopriming enhances germination performance under stressful environmental conditions, making it an effective method to improve plant resistance and yield. This study analyzed the effect of seed osmopriming with polyethylene glycol (PEG) on seed germination and physiological parameters of Coronilla varia L. Priming treatments using 10% to 30% PEG enhanced germination percentage, germination vigor, germination index, vitality index, and seedling mass and reduced the time to reach 50% germination (T50). The PEG concentration that led to better results was 10%. The content of soluble proteins (SP), proline (Pro), soluble sugars (SS), and malondialdehyde (MDA) in Coronilla varia L. seedlings increased with the severity of water stress. In addition, under water stress, electrolyte leakage rose, and peroxidase (POD) and superoxide dismutase (SOD) activities intensified, while catalase (CAT) activity increased at mild-to-moderate water stress but declined with more severe deficiency. The 10% PEG priming significantly improved germination percentage, germination vigor, germination index, vitality index, and time to 50% germination (T50) under water stress. Across the water stress gradient here tested (8 to 12% PEG), seed priming enhanced SP content, Pro content, and SOD activity in Coronilla varia L. seedlings compared to the unprimed treatments. Under 10% PEG-induced water stress, primed seedlings displayed a significantly lower MDA content and electrolyte leakage than their unprimed counterparts and exhibited significantly higher CAT and POD activities. However, under 12% PEG-induced water stress, differences in electrolyte leakage, CAT activity, and POD activity between primed and unprimed treatments were not significant. These findings suggest that PEG priming enhances the osmotic regulation and antioxidant capacity of Coronilla varia seedlings, facilitating seed germination and seedling growth and alleviating drought stress damage, albeit with reduced efficacy under severe water deficiency.


Assuntos
Germinação , Polietilenoglicóis , Plântula , Sementes , Polietilenoglicóis/farmacologia , Germinação/efeitos dos fármacos , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Desidratação , Catalase/metabolismo , Malondialdeído/metabolismo , Prolina/metabolismo , Superóxido Dismutase/metabolismo , Água/metabolismo
10.
bioRxiv ; 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38659938

RESUMO

Chimeric antigen receptor (CAR) T cell therapy targeting CD19 elicits remarkable clinical efficacy in B-cell malignancies, but many patients relapse due to failed expansion and/or progressive loss of CAR-T cells. We recently reported a strategy to potently restimulate CAR-T cells in vivo, enhancing their functionality by administration of a vaccine-like stimulus comprised of surrogate peptide ligands for a CAR linked to a lymph node-targeting amphiphilic PEG-lipid (termed CAR-T-vax). Here, we demonstrate a general strategy to generate and optimize peptide mimotopes enabling CAR-T-vax generation for any CAR. Using the clinical CD19 CAR FMC63 as a test case, we employed yeast surface display to identify peptide binders to soluble IgG versions of FMC63, which were subsequently affinity matured by directed evolution. CAR-T vaccines using these optimized mimotopes triggered marked expansion of both murine CD19 CAR-T cells in a syngeneic model and human CAR-T cells in a humanized mouse model of B cell acute lymphoblastic leukemia (B-ALL), and enhanced control of leukemia progression. This approach thus enables vaccine boosting to be applied to any clinically-relevant CAR-T cell product.

11.
Blood ; 118(10): 2840-8, 2011 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-21715304

RESUMO

The oncoprotein BCR-ABL transforms myeloid progenitor cells and is responsible for the development of chronic myeloid leukemia (CML). In transformed cells, BCR-ABL suppresses apoptosis as well as autophagy, a catabolic process in which cellular components are degraded by the lysosomal machinery. The mechanism by which BCR-ABL suppresses autophagy is not known. Here we report that in both mouse and human BCR-ABL-transformed cells, activating transcription factor 5 (ATF5), a prosurvival factor, suppresses autophagy but does not affect apoptosis. We find that BCR-ABL, through PI3K/AKT/FOXO4 signaling, transcriptionally up-regulates ATF5 expression and that ATF5, in turn, stimulates transcription of mammalian target of rapamycin (mTOR; also called mechanistic target of rapamycin), a well-established master negative-regulator of autophagy. Previous studies have shown that the BCR-ABL inhibitor imatinib mesylate induces both apoptosis and autophagy, and that the resultant autophagy modulates the efficiency by which imatinib kills BCR-ABL-transformed cells. We demonstrate that imatinib-induced autophagy is because of inhibition of the BCR-ABL/PI3K/AKT/FOXO4/ATF5/mTOR pathway that we have identified in this study.


Assuntos
Fatores Ativadores da Transcrição/metabolismo , Autofagia , Proteínas de Fusão bcr-abl/metabolismo , Regulação Neoplásica da Expressão Gênica , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Serina-Treonina Quinases TOR/genética , Fatores Ativadores da Transcrição/antagonistas & inibidores , Fatores Ativadores da Transcrição/genética , Animais , Antineoplásicos/farmacologia , Benzamidas , Western Blotting , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Imunoprecipitação da Cromatina , Humanos , Mesilato de Imatinib , Imunossupressores/farmacologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Luciferases/metabolismo , Camundongos , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação/efeitos dos fármacos , Piperazinas/farmacologia , Regiões Promotoras Genéticas/genética , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Pirimidinas/farmacologia , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Transcrição Gênica
12.
Nat Biomed Eng ; 7(9): 1081-1096, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37095318

RESUMO

In solid tumours, the abundance of macrophages is typically associated with a poor prognosis. However, macrophage clusters in tumour-cell nests have been associated with survival in some tumour types. Here, by using tumour organoids comprising macrophages and cancer cells opsonized via a monoclonal antibody, we show that highly ordered clusters of macrophages cooperatively phagocytose cancer cells to suppress tumour growth. In mice with poorly immunogenic tumours, the systemic delivery of macrophages with signal-regulatory protein alpha (SIRPα) genetically knocked out or else with blockade of the CD47-SIRPα macrophage checkpoint was combined with the monoclonal antibody and subsequently triggered the production of endogenous tumour-opsonizing immunoglobulin G, substantially increased the survival of the animals and helped confer durable protection from tumour re-challenge and metastasis. Maximizing phagocytic potency by increasing macrophage numbers, by tumour-cell opsonization and by disrupting the phagocytic checkpoint CD47-SIRPα may lead to durable anti-tumour responses in solid cancers.


Assuntos
Antígeno CD47 , Neoplasias , Camundongos , Animais , Antígeno CD47/metabolismo , Receptores Imunológicos/metabolismo , Fagocitose , Macrófagos , Anticorpos Monoclonais/metabolismo
13.
Cancer Cell ; 41(12): 2100-2116.e10, 2023 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-38039964

RESUMO

Selection of the best tumor antigen is critical for the therapeutic success of chimeric antigen receptor (CAR) T cells in hematologic malignancies and solid tumors. The anaplastic lymphoma kinase (ALK) receptor is expressed by most neuroblastomas while virtually absent in most normal tissues. ALK is an oncogenic driver in neuroblastoma and ALK inhibitors show promising clinical activity. Here, we describe the development of ALK.CAR-T cells that show potent efficacy in monotherapy against neuroblastoma with high ALK expression without toxicity. For neuroblastoma with low ALK expression, combination with ALK inhibitors specifically potentiates ALK.CAR-T cells but not GD2.CAR-T cells. Mechanistically, ALK inhibitors impair tumor growth and upregulate the expression of ALK, thereby facilitating the activity of ALK.CAR-T cells against neuroblastoma. Thus, while neither ALK inhibitors nor ALK.CAR-T cells will likely be sufficient as monotherapy in neuroblastoma with low ALK density, their combination specifically enhances therapeutic efficacy.


Assuntos
Neuroblastoma , Humanos , Quinase do Linfoma Anaplásico/genética , Quinase do Linfoma Anaplásico/metabolismo , Neuroblastoma/tratamento farmacológico , Neuroblastoma/genética , Neuroblastoma/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Antígenos de Neoplasias , Linfócitos T , Linhagem Celular Tumoral
14.
Mol Biol Rep ; 39(4): 4283-90, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21786156

RESUMO

Nitrate reductase is a key enzyme in the overall process of nitrate assimilation by plants. A full-length cDNA clone encoding nitrate reductase (NR; EC 1.6.6.1) was isolated from cucumber (Cucumis sativus L.) by RT-PCR and RACE techniques. The NR of cucumber (CsNR), a full-length cDNA sequence of 3032 bp contains an open reading frame of 2748 bp encoding 915 amino acids. The deduced 915 amino acid sequence showed high identities with NR from other plants. Quantitative real-time PCR analysis indicated that CsNR expression was different in root, stem, leaf, flower and mature fruit tissues. CsNR transcript level and nitrate reductase activity (NRA) was down-regulated and the change in NO(3) (-) concentration showed a negative trend with NRA in leaves when subjected to the 182 mM NO(3) (-) treatment. However, the CsNR transcript level was up-regulated in roots by 182 mM NO(3) (-) treatment. Furthermore, NRA in roots lagged behind CsNR expression and there was no obvious lag of NRA in leaves. This study found that in roots, there was no obvious relationship between NRA and NO(3) (-) content. These results indicated that NRA was not only controlled by the level of CsNR mRNA and there was an obvious negative relationship between NO(3) (-) content and NRA in leaves but not in roots.


Assuntos
Cucumis sativus/enzimologia , Cucumis sativus/genética , Genes de Plantas/genética , Nitrato Redutase/genética , Nitratos/farmacologia , Estresse Fisiológico/genética , Clonagem Molecular , Cucumis sativus/efeitos dos fármacos , DNA Complementar/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Dados de Sequência Molecular , Nitrato Redutase/metabolismo , Especificidade de Órgãos/efeitos dos fármacos , Especificidade de Órgãos/genética , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/enzimologia , Folhas de Planta/genética , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/enzimologia , Raízes de Plantas/genética , Reação em Cadeia da Polimerase em Tempo Real , Estresse Fisiológico/efeitos dos fármacos , Fatores de Tempo
15.
Cancer Immunol Res ; 9(11): 1245-1251, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34544686

RESUMO

Recent success in the use of immunotherapy for a broad range of cancers has propelled the field of cancer immunology to the forefront of cancer research. As more and more young investigators join the community of cancer immunologists, the Arthur L. Irving Family Foundation Cancer Immunology Symposium provided a platform to bring this expanding and vibrant community together and support the development of the future leaders in the field. This commentary outlines the lessons that emerged from the inaugural symposium highlighting the areas of scientific and career development that are essential for professional growth in the field of cancer immunology and beyond. Leading scientists and clinicians in the field provided their experience on the topics of scientific trajectory, career trajectory, publishing, fundraising, leadership, mentoring, and collaboration. Herein, we provide a conceptual and practical framework for career development to the broader scientific community.


Assuntos
Alergia e Imunologia/educação , Pesquisa Biomédica/métodos , Neoplasias/epidemiologia , Médicos/organização & administração , Humanos , Liderança
16.
Mol Biol Evol ; 26(1): 177-87, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18931384

RESUMO

Avian influenza A viruses (AIVs), including the H5N1, H9N2, and H7N7 subtypes, have been directly transmitted to humans, raising concerns over the possibility of a new influenza pandemic. To prevent a future avian influenza pandemic, it is very important to fully understand the molecular basis driving the change in AIV virulence and host tropism. Although virulent variants of other viruses have been generated by homologous recombination, the occurrence of homologous recombination within AIV segments is controversial and far from proven. This study reports three circulating H9N2 AIVs with similar mosaic PA genes descended from H9N2 and H5N1. Additionally, many homologous recombinants are also found deposited in GenBank. Recombination events can occur in PB2, PB1, PA, HA, and NP segments and between lineages of the same/different serotype. These results collectively demonstrate that intragenic recombination plays a role in driving the evolution of AIVs, potentially resulting in effects on AIV virulence and host tropism changes.


Assuntos
Evolução Molecular , Virus da Influenza A Subtipo H5N1/genética , Vírus da Influenza A Subtipo H7N7/genética , Vírus da Influenza A Subtipo H9N2/genética , Recombinação Genética , Animais , Galinhas , China , Virus da Influenza A Subtipo H5N1/patogenicidade , Vírus da Influenza A Subtipo H7N7/patogenicidade , Vírus da Influenza A Subtipo H9N2/patogenicidade
17.
Biochem Biophys Res Commun ; 393(3): 365-70, 2010 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-20138160

RESUMO

To unravel the roles of sucrose phosphate synthase (SPS) in muskmelon (Cucumis melo L.), we reduced its activity in transgenic muskmelon plants by an antisense approach. For this purpose, an 830 bp cDNA fragment of muskmelon sucrose phosphate synthase was expressed in antisense orientation behind the 35S promoter of the cauliflower mosaic virus. The phenotype of the antisense plants clearly differed from that of control plants. The transgenic plant leaves were markedly smaller, and the plant height and stem diameter were obviously shorter and thinner. Transmission electron microscope observation revealed that the membrane degradation of chloroplast happened in transgenic leaves and the numbers of grana and grana lamella in the chloroplast were significantly less, suggesting that the slow growth and weaker phenotype of transgenic plants may be due to the damage of the chloroplast ultrastructure, which in turn results in the decrease of the net photosynthetic rate. The sucrose concentration and levels of sucrose phosphate synthase decreased in transgenic mature fruit, and the fruit size was smaller than the control fruit. Together, our results suggest that sucrose phosphate synthase may play an important role in regulating the muskmelon plant growth and fruit development.


Assuntos
Cucumis melo/crescimento & desenvolvimento , Frutas/crescimento & desenvolvimento , Glucosiltransferases/fisiologia , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Cucumis melo/enzimologia , Cucumis melo/genética , DNA Antissenso/genética , Frutas/enzimologia , Frutas/genética , Glucosiltransferases/antagonistas & inibidores , Glucosiltransferases/genética , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/genética , Sacarose/metabolismo
18.
Sci Transl Med ; 11(498)2019 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-31243150

RESUMO

The clinical application of cytokine therapies for cancer treatment remains limited due to severe adverse reactions and insufficient therapeutic effects. Although cytokine localization by intratumoral administration could address both issues, the rapid escape of soluble cytokines from the tumor invariably subverts this effort. We find that intratumoral administration of a cytokine fused to the collagen-binding protein lumican prolongs local retention and markedly reduces systemic exposure. Combining local administration of lumican-cytokine fusions with systemic immunotherapies (tumor-targeting antibody, checkpoint blockade, cancer vaccine, or T cell therapy) improves efficacy without exacerbating toxicity in syngeneic tumor models and the BrafV600E /Ptenfl/fl genetically engineered melanoma model. Curative abscopal effects on noncytokine-injected tumors were also observed as a result of a protective and systemic CD8+ T cell response primed by local therapy. Cytokine collagen-anchoring constitutes a facile, tumor-agnostic strategy to safely potentiate otherwise marginally effective systemic immunotherapies.


Assuntos
Citocinas/administração & dosagem , Imunoterapia , Neoplasias/imunologia , Neoplasias/terapia , Animais , Anticorpos Antineoplásicos/imunologia , Linhagem Celular Tumoral , Colágeno , Modelos Animais de Doenças , Interleucina-12/uso terapêutico , Interleucina-2/uso terapêutico , Lumicana/metabolismo , Melanoma Experimental/imunologia , Melanoma Experimental/patologia , Camundongos Endogâmicos C57BL , Terapia Neoadjuvante , PTEN Fosfo-Hidrolase/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Proteínas Proto-Oncogênicas B-raf/metabolismo , Albumina Sérica/metabolismo , Linfócitos T/imunologia , Redução de Peso
19.
Science ; 365(6449): 162-168, 2019 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-31296767

RESUMO

Chimeric antigen receptor-T cell (CAR-T) therapy has been effective in the treatment of hematologic malignancies, but it has shown limited efficacy against solid tumors. Here we demonstrate an approach to enhancing CAR-T function in solid tumors by directly vaccine-boosting donor cells through their chimeric receptor in vivo. We designed amphiphile CAR-T ligands (amph-ligands) that, upon injection, trafficked to lymph nodes and decorated the surfaces of antigen-presenting cells, thereby priming CAR-Ts in the native lymph node microenvironment. Amph-ligand boosting triggered massive CAR-T expansion, increased donor cell polyfunctionality, and enhanced antitumor efficacy in multiple immunocompetent mouse tumor models. We demonstrate two approaches to generalizing this strategy to any chimeric antigen receptor, enabling this simple non-human leukocyte antigen-restricted approach to enhanced CAR-T functionality to be applied to existing CAR-T designs.


Assuntos
Vacinas Anticâncer/imunologia , Vacinas Anticâncer/uso terapêutico , Imunoterapia Adotiva , Neoplasias/terapia , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T/imunologia , Animais , Modelos Animais de Doenças , Células HEK293 , Humanos , Imunização Secundária , Células K562 , Camundongos
20.
Methods Mol Biol ; 1465: 159-73, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27581147

RESUMO

Genome-wide RNA interference (RNAi) screening in mammalian cells has proven to be a powerful tool for identifying new genes and molecular pathways relevant to many cellular processes and diseases. For example, screening for genes that, when inactivated, lead to resistance to cancer therapeutic drugs can reveal new mechanisms for how resistance develops and identify potential targetable strategies to overcome drug resistance. Here, we describe a detailed procedure for performing a high-throughput RNAi screen using a genome-wide human short hairpin RNA (shRNA) library for identifying tyrosine kinase inhibitor (TKI)-resistance genes in a human CML cell line model.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Ensaios de Triagem em Larga Escala/métodos , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , RNA Interferente Pequeno/genética , Proteínas de Fusão bcr-abl/genética , Biblioteca Gênica , Humanos , Mesilato de Imatinib/farmacologia , Células K562 , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA