Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 197
Filtrar
1.
Nano Lett ; 23(11): 5164-5170, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37263581

RESUMO

Topological defects are fundamental concepts in physics, but little is known about the transition between distinct types across different dimensionalities. In topological magnetism, as in field theory, the transition between 1D strings and 0D monopoles is a key process whose observation has remained elusive. Here, we introduce a novel mechanism that allows for the controlled stabilization of emergent monopoles and show that magnetic skyrmion strings can be folded into monopoles. Conversely, they act as seeds out of which the entire string structure can unfold, containing its complete information. In chiral magnets, this process can be observed by resonant elastic X-ray scattering when the objects are in proximity to a polarized ferromagnet, whereby a pure monopole lattice is emerging on the surface. Our experimental proof of the reversible evolution from monopole to string sheds new light on topological defects and establishes the emergent monopole lattice as a new 3D topological phase.

2.
Int J Mol Sci ; 25(4)2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38396810

RESUMO

RLPa-2 (Mw 15.6 kDa) is a polysaccharide isolated from Rosa laevigata Michx. It consists of arabinose (Ara), galactose (Gal), rhamnose (Rha), glucose (Glc), xylose (Xyl), and galacturonic acid (Gal-UA) with a molar ratio of 1.00:0.91:0.39:0.34:0.25:0.20. Structural characterization was performed by methylation and NMR analysis, which indicated that RLPa-2 might comprise →6)-α-D-Galp-(1→, →4)-α-D-GalpA-(1→, α-L-Araf-(1→, →2,4)-α-D-Glcp-(1→, ß-D-Xylp, and α-L-Rhap. In addition, the bioactivity of RLPa-2 was assessed through an in vitro macrophage polarization assay. Compared to positive controls, there was a significant decrease in the expression of M1 macrophage markers (CD80, CD86) and p-STAT3/STAT3 protein. Additionally, there was a down-regulation in the production of pro-inflammatory mediators (NO, IL-6, TNF-α), indicating that M1 macrophage polarization induced with lipopolysaccharide (LPS) and interferon-γ (IFN-γ) stimulation could be inhibited by RLPa-2. These findings demonstrate that the RLPa-2 might be considered as a potential anti-inflammatory drug to reduce inflammation.


Assuntos
Frutas , Rosa , Frutas/química , Rosa/química , Polissacarídeos/química , Macrófagos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/análise
3.
Molecules ; 29(4)2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38398633

RESUMO

Dendrobium officinale is an important edible and medicinal plant, with the Dendrobium officinale polysaccharide (DOP) being its primary active constituent, known for its diverse biological activities. In this study, DOP was extracted and characterized for its structural properties. The potential of DOP to ameliorate gastric ulcers (GUs) was investigated using an acetic-acid-induced GU model in rats. The results demonstrated that DOP exerted a multifaceted protective effect against GU, mitigating the deleterious impact on food intake and body weight in rats. DOP exhibited its protective action by attenuating cellular damage attributed to oxidative stress and inflammatory reactions mediated by enhanced activities of SOD, GSH, and GSH-PX, coupled with a downregulation in the expression of pro-inflammatory cytokines, including IL-1ß, IL-6, and TNF-α. Furthermore, DOP effectively inhibited apoptosis in gastric mucosa cells of acetic-acid-induced GU rat models and facilitated the self-repair of damaged tissues. Remarkably, the DOP-200 and DOP-400 groups outperformed omeprazole in reducing the expression of IL-6 and malondialdehyde (MDA) in tissues, as well as IL-1ß, IL-6, and TNF-α in serum. These groups also exhibited an improved expression of SOD in tissues and SOD, GSH, and GSH-PX in serum. A Western blot analysis of gastric mucosa demonstrated that the DOP-200 and DOP-400 groups significantly reduced the expression of NF-κBp65, phosphorylated NF-κBp65, FoxO3a, and Bim. The observed antagonism to GU appeared to be associated with the NF-κB cell pathway. Additionally, qRT-PCR results indicate that DOP reduced the mRNA transcription levels of IL-6, and TNF-α, which shows that the healing of GU is related to the reduction in the inflammatory reaction by DOP. However, the expression of EGF and VEGF decreased, suggesting that the mechanism of DOP inhibiting GU may not be directly related to EGF and VEGF, or there is an uncertain competitive relationship between them, so further research is needed.


Assuntos
Dendrobium , Úlcera Gástrica , Ratos , Animais , Dendrobium/química , Ácido Acético , Fator de Necrose Tumoral alfa/genética , Úlcera Gástrica/induzido quimicamente , Úlcera Gástrica/tratamento farmacológico , Fator de Crescimento Epidérmico , Interleucina-6 , Fator A de Crescimento do Endotélio Vascular , Polissacarídeos/farmacologia , Superóxido Dismutase
4.
Molecules ; 29(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38731567

RESUMO

A neutral Polygonatum cyrtonema polysaccharide (NPCP) was isolated and purified from Polygonatum cyrtonema by various chromatographic techniques, including DEAE-52 and Sephadex-G100 chromatography. The structure of NPCP was characterized by HPLC, HPGPC, GC-MS, FT-IR, NMR, and SEM. Results showed that NPCP is composed of glucose (55.4%) and galactose (44.6%) with a molecular weight of 3.2 kDa, and the sugar chain of NPCP was →1)-α-D-Glc-(4→1)-ß-D-Gal-(3→. In vitro bioactivity experiments demonstrated that NPCP significantly enhanced macrophages proliferation and phagocytosis while inhibiting the M1 polarization induced by LPS as well as the M2 polarization induced by IL-4 and IL-13 in macrophages. Additionally, NPCP suppressed the secretion of IL-6 and TNF-α in both M1 and M2 cells but promoted the secretion of IL-10. These results suggest that NPCP could serve as an immunomodulatory agent with potential applications in anti-inflammatory therapy.


Assuntos
Macrófagos , Fagocitose , Polygonatum , Polissacarídeos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/imunologia , Polygonatum/química , Camundongos , Polissacarídeos/farmacologia , Polissacarídeos/química , Polissacarídeos/isolamento & purificação , Animais , Fagocitose/efeitos dos fármacos , Fatores Imunológicos/farmacologia , Fatores Imunológicos/química , Fatores Imunológicos/isolamento & purificação , Células RAW 264.7 , Citocinas/metabolismo , Proliferação de Células/efeitos dos fármacos , Agentes de Imunomodulação/farmacologia , Agentes de Imunomodulação/química , Agentes de Imunomodulação/isolamento & purificação , Peso Molecular
5.
Prep Biochem Biotechnol ; 54(7): 859-871, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38149618

RESUMO

Polysaccharides derived from Auricularia auricula exhibit diverse biological activities and hold significant potential for commercial utilization as functional food ingredients. In this investigation, polysaccharides from A. auricula were obtained using six extraction techniques (ammonium oxalate solution extraction, sodium hydroxide solution extraction, hot water extraction, pectinase and cellulase-assisted extraction, ultrasonic-assisted extraction, and microwave-assisted extraction). Subsequently, a comprehensive comparison was conducted to evaluate their physicochemical properties and biological functionalities. The ammonium oxalate solution extraction method yielded a higher extraction rate (11.76%) and polysaccharide content (84.12%), as well as a higher uronic acid content (10.13%). Although the six Auricularia polysaccharides had different molecular weight distributions, monosaccharide molar ratios, similar monosaccharide compositions, and characteristic functional groups of polysaccharides, they exhibited different surface morphology. In vitro assays showed that polysaccharides extracted by ammonium oxalate solution possessed good scavenging ability against DPPH free radical, hydroxyl free radical and superoxide anion free radical as well as reduction power of iron ion. At the same time, both polysaccharides extracted by ammonium oxalate solution and sodium hydroxide solution promoted NO production in mouse macrophages along with the secretion of cytokines TNF-α, IL-1ß, and IL-6. These results indicated significant differences in the structure and characteristics among Auricularia polysaccharides prepared by various extraction methods, which may be related to the variety or origin of A. auricula; furthermore, their bioactivities varied accordingly in vitro assays where the ammonium oxalate solution extraction method was found more beneficial for obtaining high-quality bioactive Auricularia polysaccharides.


Assuntos
Auricularia , Camundongos , Animais , Auricularia/química , Células RAW 264.7 , Polissacarídeos Fúngicos/farmacologia , Polissacarídeos Fúngicos/isolamento & purificação , Polissacarídeos Fúngicos/química , Polissacarídeos/farmacologia , Polissacarídeos/isolamento & purificação , Polissacarídeos/química , Peso Molecular , Óxido Nítrico , Fracionamento Químico/métodos , Sequestradores de Radicais Livres/isolamento & purificação , Sequestradores de Radicais Livres/farmacologia , Sequestradores de Radicais Livres/química , Antioxidantes/farmacologia , Antioxidantes/isolamento & purificação , Antioxidantes/química , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo
6.
Chem Biodivers ; 20(11): e202301063, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37769192

RESUMO

Eleven new thiosemicarbazone derivatives (1-11) were designed from nine different biologically and pharmacologically important isothiocyanate derivatives containing functional groups such as fluorine, chlorine, methoxy, methyl, and nitro at various positions of the phenyl ring, in addition to the benzyl unit in the molecular skeletal structure. First, their substituted-thiosemicarbazide derivatives were synthesized from the treatment of isothiocyanate with hydrazine to synthesize the designed compounds. Through a one-step easy synthesis and an eco-friendly process, the designed compounds were synthesized with yields of up to 95 % from the treatment of the thiosemicarbazides with aldehyde derivatives having methoxy and hydroxy groups. The structures of the synthesized molecules were elucidated with elemental analysis and FT-IR, 1 H-NMR, and 13 C-NMR spectroscopic methods. The electronic and spectroscopic properties of the compounds were determined by the DFT calculations performed at the B3LYP/6-311++G(2d,2p) level of theory, and the experimental findings were supported. The effects of some global reactivity parameters and nucleophilic-electrophilic attack abilities of the compounds on the enzyme inhibition properties were also investigated. They exhibited a highly potent inhibition effect on acetylcholinesterase (AChE) and carbonic anhydrases (hCAs) (KI values are in the range of 23.54±4.34 to 185.90±26.16 nM, 103.90±23.49 to 325.90±77.99 nM, and 86.15±18.58 to 287.70±43.09 nM for AChE, hCA I, and hCA II, respectively). Furthermore, molecular docking simulations were performed to explain each enzyme-ligand complex's interaction.


Assuntos
Tiossemicarbazonas , Tiossemicarbazonas/química , Relação Estrutura-Atividade , Simulação de Acoplamento Molecular , Inibidores da Colinesterase/química , Inibidores da Anidrase Carbônica/farmacologia , Inibidores da Anidrase Carbônica/química , Acetilcolinesterase/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Anidrase Carbônica I , Inibidores Enzimáticos/química , Estrutura Molecular , Isotiocianatos
7.
Chem Biodivers ; 20(6): e202201223, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37138194

RESUMO

Azo-Schiff base ligand (N'-((E)-2-hydroxy-5-((E)-(2-hydroxyphenyl)diazenyl)benzylidene)nicotinohydrazide) and its Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and Pd(II) chelates were prepared and elucidated. The geometrical structures of the prepared chelates were characterized by several spectroanalytical techniques and thermogravimetric analysis. The obtained data revealed that the chelates have (1M:1L), (1M:2L), (1M:3L), and (1M:4L) molar ratios. The infrared spectra displayed that the H2 L ligand behaves in a pentacoordinate fashion in chelates of Mn(II), Ni(II), and Cu(II) ions. However, in Zn(II) and Pd(II) chelates, the ligand is coordinated as a tetradentate species (NONO) through nitrogen atoms of azomethine and azo groups as well as oxygen atoms of phenolic hydroxy, and carbonyl groups. Besides, it was concluded that the oxygen atoms of carbonyl and hydroxy groups along with the azomethine nitrogen atom of the ligand are bounded with Co(II) ion in metal chelate (2). According to the measured molar conductance values, the chelates of Cu(II), Zn(II), and Pd(II) are weak electrolytes, but Mn(II), Co(II), and Ni(II) chelates are ionic. The azo-Schiff base ligand and its prepared metal chelates were tested for their antioxidant and antibacterial properties. The Ni(II) chelate was found to be considered an effective antioxidant agent. In addition, the available antibacterial data suggest that the Ni(II) and Co(II) chelates may be employed as inhibitor agents against Proteus vulgaris, Escherichia coli, and Bacillus subtilis bacteria. Furthermore, the data showed that, in comparison to the ligand and other metal chelates, copper(II) chelate (4) exhibited higher action against Bacillus subtilis bacteria.


Assuntos
Complexos de Coordenação , Cobre , Cobre/farmacologia , Cobre/química , Antioxidantes/farmacologia , Antioxidantes/química , Bases de Schiff/farmacologia , Bases de Schiff/química , Ligantes , Espectroscopia de Ressonância Magnética , Bactérias , Metais/química , Antibacterianos/farmacologia , Hidrazinas/farmacologia , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Testes de Sensibilidade Microbiana
8.
Molecules ; 28(17)2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37687184

RESUMO

Alternative protein sources for the human diet may help overcome the growing food pressure. Plants with abundant resources and high protein content are potential sources. In this article, graded proteins and isolated proteins from Corylus mandshurica Maxim kernels were extracted by the Osborne procedure and the alkali-solution and acid-isolation method, respectively, and the contents of the five proteins, and the differences in nutritional value and structural properties of the main proteins, were investigated. Amino acid analysis revealed that the total essential amino acids in the five proteins ranged from 249.58 to 324.52 mg/g. The essential amino acid profiles in the proteins were similar to those of FAO/WHO except for the alcohol-soluble protein. The essential amino acid indices ranged from 58.59 to 72.19 and the biological values ranged from 52.16 to 66.99, and the highest nutritional indices were found for the isolate and water-soluble protein, which were 41.68 and 55.78, respectively. The molecular weight pattern distribution of the protein isolates of the Corylus mandshurica Maxim kernel was more similar to that of the water-soluble proteins by SDS-PAGE. The ß-sheet and α-helix were the main secondary structures in the two protein fractions. The fluorescence spectra showed that the maximum fluorescence intensity of the two proteins and their λmax were also somewhat different. From the perspective of microscopic morphology, the two proteins are mainly compact and irregular lamellar structures, but the surface of the water-soluble protein is more flat and regular. Both proteins have good solubility, and the water-soluble protein has higher solubility. In general, the protein isolates of the Corylus mandshurica Maxim kernel and the water-soluble protein showed their potential as plant protein resources.


Assuntos
Corylus , Humanos , Aminoácidos , Valor Nutritivo , Proteínas de Plantas , Aminoácidos Essenciais
9.
Molecules ; 28(3)2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36770932

RESUMO

Polysaccharides are important bioactive components of Nitraria retusa fruit (NRF). In this study, the ultrasonic-assisted extraction (UAE) conditions of polysaccharides from Nitraria retusa fruit (NRFPs) were optimized by response surface methodology (RSM). The structural characteristics and antioxidant activity were investigated. The maximum NRFPs yield of 3.35% was obtained under the following optimal conditions: temperature of 59.5 °C, time of 30.5 min, liquid-to-solid ratio of 19.5 mL/g. Three polysaccharide fractions, NRFP-1 (20.01 kDa), NRFP-2 (28.96 kDa), and NRFP-3 (67.45 kDa), were isolated. Glucose, galactose, and arabinose in different percentages were identified as the primary monosaccharide units. The Fourier transform infrared spectrometer (FT-IR) and nuclear magnetic resonance (NMR) analysis indicated the presence of α- and ß-glycosidic bonds in NRFPs. The NRFP-3 exhibited the highest scavenging activities against DPPH, ABTS, -OH free radicals, and Fe+3-reducing activity.


Assuntos
Antioxidantes , Magnoliopsida , Antioxidantes/química , Frutas/química , Espectroscopia de Infravermelho com Transformada de Fourier , Polissacarídeos/química
10.
Molecules ; 28(24)2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38138509

RESUMO

Dendrobium huoshanense is a famous edible and medicinal herb, and polysaccharides are the main bioactive component in it. In this study, response surface methodology (RSM) combined with a Box-Behnken design (BBD) was used to optimize the enzyme-assisted extraction (EAE), ultrasound-microwave-assisted extraction (UMAE), and hot water extraction (HWE) conditions and obtain the polysaccharides named DHP-E, DHP-UM, and DHP-H. The effects of different extraction methods on the physicochemical properties, structure characteristics, and bioactivity of polysaccharides were compared. The differential thermogravimetric curves indicated that DHP-E showed a broader temperature range during thermal degradation compared with DHP-UM and DHP-H. The SEM results showed that DHP-E displayed an irregular granular structure, but DHP-UM and DHP-H were sponge-like. The results of absolute molecular weight indicated that polysaccharides with higher molecular weight detected in DHP-H and DHP-UM did not appear in DHP-E due to enzymatic degradation. The monosaccharide composition showed that DHPs were all composed of Man, Glc, and Gal but with different proportions. Finally, the glycosidic bond types, which have a significant effect on bioactivity, were decoded with methylation analysis. The results showed that DHPs contained four glycosidic bond types, including Glcp-(1→, →4)-Manp-(1→, →4)-Glcp-(1→, and →4,6)-Manp-(1→ with different ratios. Furthermore, DHP-E exhibited better DPPH and ABTS radical scavenging activities. These findings could provide scientific foundations for selecting appropriate extraction methods to obtain desired bioactivities for applications in the pharmaceutical and functional food industries.


Assuntos
Antioxidantes , Dendrobium , Humanos , Antioxidantes/farmacologia , Antioxidantes/química , Dendrobium/química , Peso Molecular , Monossacarídeos/análise , Polissacarídeos/farmacologia , Polissacarídeos/química
11.
Molecules ; 28(13)2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37446585

RESUMO

In the presented research, activated carbons from wheat bran were obtained as a result of pyrolysis and physical activation (CO2 or/and steam). In addition, the obtained materials were subjected to additional modification with superheated steam using the microwave radiation as an energy source. The detailed materials characterization was performed using low-temperature nitrogen adsorption/desorption, Raman spectroscopy, X-ray diffraction, thermal analysis (TG), Boehm's titration, point of zero charge (pHpzc), scanning electron microscopy (SEM) and FT-IR/ATR methods. Moreover, the sorption capacity towards methylene blue (MB) was determined. The activated carbons were characterized with a well-developed surface and pore structure (SBET = 339.6-594.0 m2/g; Vp = 0.157-0.356 cm3/g). Activation in the presence of steam and additional modification with microwave radiation resulted in much better development of the porous structure (SBET = 600.4 m2/g; Vp = 0.380 cm3/g). The materials were shown to possess amorphous structure and thermal stability up to the temperatures of ~450-500 °C. They have good adsorption capacity towards MB varying from 150 mg/g to 241 mg/g depending on activation manner. The adsorption can be described by the pseudo-second order model (R2 = 0.99) and fitted to the Langmuir isotherm.


Assuntos
Vapor , Poluentes Químicos da Água , Espectroscopia de Infravermelho com Transformada de Fourier , Azul de Metileno/química , Adsorção , Porosidade , Carvão Vegetal/química , Cinética , Poluentes Químicos da Água/química
12.
Molecules ; 28(18)2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37764252

RESUMO

Graphitic carbon nitride (gCN) materials have been shown to efficiently perform light-induced water splitting, carbon dioxide reduction, and environmental remediation in a cost-effective way. However, gCN suffers from rapid charge-carrier recombination, inefficient light absorption, and poor long-term stability which greatly hinders photocatalytic performance. To determine the underlying catalytic mechanisms and overall contributions that will improve performance, the electronic structure of gCN materials has been investigated using electron paramagnetic resonance (EPR) spectroscopy. Through lineshape analysis and relaxation behavior, evidence of two independent spin species were determined to be present in catalytically active gCN materials. These two contributions to the total lineshape respond independently to light exposure such that the previously established catalytically active spin system remains responsive while the newly observed, superimposed EPR signal is not increased during exposure to light. The time dependence of these two peaks present in gCN EPR spectra recorded sequentially in air over several months demonstrates a steady change in the electronic structure of the gCN framework over time. This light-independent, slowly evolving additional spin center is demonstrated to be the result of oxidative processes occurring as a result of exposure to the environment and is confirmed by forced oxidation experiments. This oxidized gCN exhibits lower H2 production rates and indicates quenching of the overall gCN catalytic activity over longer reaction times. A general model for the newly generated spin centers is given and strategies for the alleviation of oxidative products within the gCN framework are discussed in the context of improving photocatalytic activity over extended durations as required for future functional photocatalytic device development.

13.
Anal Biochem ; 646: 114629, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35289286

RESUMO

Infrared (IR) spectroscopy is rapidly gaining traction for monitoring biotherapeutic critical quality attributes. Microfluidic Modulation Spectroscopy (MMS), a novel automated IR technology, has been shown to be an effective technique for generating high quality, reproducible secondary structure data for protein therapeutics including monoclonal antibodies. In this study, monoclonal antibodies (mAbs) at concentrations ranging from 0.5 to 50 mg/mL were analyzed and high-quality data was obtained by optimizing two critical acquisition parameters (a) sample modulation frequency and (b) detector dwell time settings. The ability to generate reproducible data with high sensitivity at low formulation concentrations indicates that MMS is a reliable method for evaluating the secondary structure of low concentration biotherapeutic formulations and modalities.


Assuntos
Anticorpos Monoclonais , Microfluídica , Anticorpos Monoclonais/química , Estrutura Secundária de Proteína , Espectrofotometria Infravermelho
14.
Glycoconj J ; 39(6): 759-772, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36342595

RESUMO

In this study, a water-soluble polysaccharide from Eucommia folium was extracted by hot water and purified using Sephadex G-200 gel columns. The results showed that the purified fraction (EFP) has a molecular weight of 9.98 × 105 Da and consisted of rhamnose, arabinose, galactose, glucose, mannose, xylose, galacturonic acid, and glucuronic acid (molar ratio: 0.226: 1.739: 2.183: 1: 0.155: 0.321: 0.358: 0.047). The combination of infrared spectroscopy and NMR analysis proved that EFP is an acidic polysaccharide whose main chain consists of α-L-Araf-(1 → , → 3,5)-α-Araf-(1 → , → 3)-ß-Galp-(1 → , → 3,6)-ß-Glcp-(1 → , → 2)-α-D-Manp-(1 → , → 4)-α-GalpA-(1 → , → 2,4)-α-Rhap-(1 → . In addition, the in vivo antitumoral activity of EFP was studied using a H22 tumor-bearing mice model. EFP effectively inhibited tumor growth in mice following intragastric administration. By Combining with the results of the apoptosis assay and JC-1 staining analysis, we confirmed that EFP induces apoptosis through the mitochondrial pathway. Furthermore, cell cycle analysis demonstrated that EFP blocks the cell cycle at S phase.


Assuntos
Polissacarídeos , Água , Camundongos , Animais , Polissacarídeos/química , Galactose , Ramnose , Peso Molecular
15.
Protein Expr Purif ; 191: 106007, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34728367

RESUMO

Metacaspases are known to have a fundamental role in apoptosis-like, a programmed cellular death (PCD) in plants, fungi, and protozoans. The last includes several parasites that cause diseases of great interest to public health, mostly without adequate treatment and included in the neglected tropical diseases category. One of them is Trypanosoma cruzi which causes Chagas disease and has two metacaspases involved in its PCD: TcMCA3 and TcMCA5. Their roles seemed different in PCD, TcMCA5 appears as a proapoptotic protein negatively regulated by its C-terminal sequence, while TcMCA3 is described as a cell cycle regulator. Despite this, the precise role of TcMCA3 and TcMCA5 and their atomic structures remain elusive. Therefore, developing methodologies to allow investigations of those metacaspases is relevant. Herein, we produced full-length and truncated versions of TcMCA5 and applied different strategies for their folded recombinant production from E. coli inclusion bodies. Biophysical assays probed the efficacy of the production method in providing a high yield of folded recombinant TcMCA5. Moreover, we modeled the TcMCA5 protein structure using experimental restraints obtained by XLMS. The experimental design for novel methods and the final protocol provided here can guide studies with other metacaspases. The production of TcMCA5 allows further investigations as protein crystallography, HTS drug discovery to create potential therapeutic in the treatment of Chagas' disease and in the way to clarify how the PCD works in the parasite.


Assuntos
Caspases/química , Redobramento de Proteína , Proteínas de Protozoários/química , Trypanosoma cruzi/enzimologia , Caspases/genética , Domínios Proteicos , Proteínas de Protozoários/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Trypanosoma cruzi/genética
16.
Crit Rev Food Sci Nutr ; 62(25): 7117-7128, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33860692

RESUMO

Ferritin is an important iron storage protein, which is widely existed in all forms of life. Ferritin can regulate iron homeostasis when iron ions are lacking or enriched in the body, so as to avoid iron deficiency diseases and iron poisoning. Ferritin presents a hollow nanocage, which can store ions or other small molecular substances in the cavity. Therefore, ferritin shows its potential as a functional nanomaterial that can deliver nutrients or drugs in a targeted manner to improve bioavailability. Due to the special structure, the research on ferritin has attracted more and more attention in recent years. In this paper, the structural characteristics of ferritin were introduced, and the natural purification and prokaryotic expression methods of ferritin from different sources were described. At the same time, ferritin can bind to small molecules, so that it has the activity of small molecules, to construct a new type of ferritin. As a result, ferritin plays an important role as a nutrient substance, in targeted transport, and disease monitoring, etc. In conclusion, the yield of ferritin can be improved by means of molecular biology. Meanwhile, molecular modification can be used to make ferritin have unique activity and function, which lays a foundation for subsequent research.HighlightsThe molecular and structural properties of ferritins were clearly described.Isolation and purification technologies of ferritin were compared.Characterization, functions and molecular modifications mechanism of ferritin were reviewed.The applications of ferritin in pharmaceutical and food industry were prospected.


Assuntos
Ferritinas , Nanoestruturas , Ferritinas/química , Homeostase , Ferro/metabolismo
17.
Mar Drugs ; 20(3)2022 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-35323471

RESUMO

In the present study, a selenium-chondroitin sulfate (SeCS) was synthesized by the sodium selenite (Na2SeO3) and ascorbic acid (Vc) redox reaction using chondroitin sulfate derived from shark cartilage as a template, and characterized by SEM, SEM-EDS, FTIR and XRD. Meanwhile, its stability was investigated at different conditions of pH and temperatures. Besides, its antioxidant activity was further determined by the DPPH and ABTS assays. The results showed the SeCS with the smallest particle size of 131.3 ± 4.4 nm and selenium content of 33.18% was obtained under the optimal condition (CS concentration of 0.1 mg/mL, mass ratio of Na2SeO3 to Vc of 1:8, the reaction time of 3 h, and the reaction temperature of 25 °C). SEM image showed the SeCS was an individual and spherical nanostructure and its structure was evidenced by FTIR and XRD. Meanwhile, SeCS remained stable at an alkaline pH and possessed good storage stability at 4 °C for 28 days. The results on scavenging free radical levels showed that SeCS exhibited significantly higher antioxidant activity than SeNPs and CS, indicating that SeCS had a potential antioxidant effect.


Assuntos
Antioxidantes/química , Cartilagem/química , Sulfatos de Condroitina/química , Nanopartículas/química , Selênio/química , Tubarões , Animais , Benzotiazóis/química , Compostos de Bifenilo/química , Sulfatos de Condroitina/isolamento & purificação , Estabilidade de Medicamentos , Concentração de Íons de Hidrogênio , Tamanho da Partícula , Picratos/química , Ácidos Sulfônicos/química , Temperatura
18.
Int J Mol Sci ; 23(16)2022 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-36012651

RESUMO

Astaxanthin loaded Pickering emulsion with zein/sodium alginate (SA) as a stabilizer (named as APEs) was developed, and its structure and stability were characterized. The encapsulation efficiency of astaxanthin (Asta) in APEs was up to 86.7 ± 3.8%, with a mean particle size of 4.763 µm. Freeze-dried APEs showed particles stacked together under scanning electronic microscope; whereas dispersed spherical nanoparticles were observed in APEs dilution under transmission electron microscope images. Confocal laser scanning microscope images indicated that zein particles loaded with Asta were aggregated with SA coating. X-ray diffraction patterns and Fourier transform infrared spectra results showed that intermolecular hydrogen bonding, electrostatic attraction and hydrophobic effect were involved in APEs formation. APEs demonstrated non-Newtonian shear-thinning behavior and fit well to the Cross model. Compared to bare Asta extract, APEs maintained high Asta retention and antioxidant activity when heated from 50 to 10 °C. APEs showed different stability at pH (3.0-11.0) and Na+, K+, Ca2+, Cu2+ and Fe2+ conditions by visual, zeta potential and polydispersity index measurements. Additionally, the first order kinetics fit well to describe APEs degradation at pH 3.0 to 9.0, Na+, and K+ conditions. Our results suggest the potential application of Asta-loaded Pickering emulsion in food systems as a fortified additive.


Assuntos
Nanopartículas , Zeína , Alginatos/química , Emulsões/química , Nanopartículas/química , Tamanho da Partícula , Xantofilas , Zeína/química
19.
Molecules ; 27(21)2022 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-36363972

RESUMO

Direct conversion of methane to methanol is an effective and practical process to improve the efficiency of natural gas utilization. Copper (Cu)-based catalysts have attracted great research attention, due to their unique ability to selectively catalyze the partial oxidation of methane to methanol at relatively low temperatures. In recent decades, many different catalysts have been studied to achieve a high conversion of methane to methanol, including the Cu-based enzymes, Cu-zeolites, Cu-MOFs (metal-organic frameworks) and Cu-oxides. In this mini review, we will detail the obtained evidence on the exact state of the active Cu sites on these various catalysts, which have arisen from the most recently developed techniques and the results of DFT calculations. We aim to establish the structure-performance relationship in terms of the properties of these materials and their catalytic functionalities, and also discuss the unresolved questions in the direct conversion of methane to methanol reactions. Finally, we hope to offer some suggestions and strategies for guiding the practical applications regarding the catalyst design and engineering for a high methanol yield in the methane oxidation reaction.


Assuntos
Metanol , Zeolitas , Metano , Domínio Catalítico , Catálise
20.
Molecules ; 27(13)2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35807439

RESUMO

The structural characterization, the in vitro antioxidant activity, and the hypoglycemic activity of a polysaccharide (SGP-1-1) isolated from Siraitia grosvenorii (SG) were studied in this paper. SGP-1-1, whose molecular weight is 19.037 kDa, consisted of Gal:Man:Glc in the molar ratio of 1:2.56:4.90. According to the results of methylation analysis, GC-MS, and NMR, HSQC was interpreted as a glucomannan with a backbone composed of 4)-ß-D-Glcp-(1→4)-, α-D-Glcp-(1→4)-, and 4)-Manp-(1 residues. α-1,6 linked an α-D-Galp branch, and α-1,6 linked an α-D-Glcp branch. The study indirectly showed that SGP-1-1 has good in vitro hypoglycemic and antioxidant activities and that these activities may be related to the fact that the SGP-1-1's monosaccharide composition (a higher proportion of Gal and Man) is the glycosidic-bond type (α- and ß-glycosidic bonds). SGP-1-1 could be used as a potential antioxidant and hypoglycemic candidate for functional and nutritional food applications.


Assuntos
Antioxidantes , Hipoglicemiantes , Antioxidantes/química , Antioxidantes/farmacologia , Humanos , Hipoglicemiantes/farmacologia , Peso Molecular , Monossacarídeos/análise , Polissacarídeos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA