Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Sci Food Agric ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38872574

RESUMO

BACKGROUND: The effect of oleogels prepared with peanut oil and different concentrations of γ-oryzanol and ß-sitosterol mixture (γ/ß; 20, 40, 60, 80 and 100 g kg-1) on the physicochemical and gel properties of myofibrillar protein (MP) was investigated. RESULTS: The solubility and average particle size of MP first decreased and then increased with increasing γ/ß concentration. Peanut oil or oleogels could induce the exposure of hydrophobic amino acids and the unfolding of MP, thus significantly increasing the surface hydrophobicity, sulfhydryl content and absolute value of zeta potential, which reached maximum values when the γ/ß concentration was 60 g kg-1 (P < 0.05). The addition of peanut oil decreased the gel strength and water holding capacity of MP gel. However, oleogels prepared with 60 g kg-1 γ/ß could significantly increase the hydrophobic interactions and disulfide bond content of MP gel (P < 0.05), which promoted the crosslinking and aggregation of MP, enhancing the gel properties. Peanut oil had no significant influence on the secondary structure of MP, while oleogels promoted the transition of MP conformation from α-helix to ß-sheet structure. The results of light microscopy and confocal laser scanning microscopy indicated that oleogels prepared with 60 g kg-1 γ/ß filled in the pores of MP gel network to form denser and more uniform structure. CONCLUSION: Oleogels prepared with 60 g kg-1 γ/ß could effectively improve the quality of MP gel and have promising application prospects in surimi products. © 2024 Society of Chemical Industry.

2.
Food Res Int ; 188: 114532, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38823889

RESUMO

Luteolin has anti-inflammatory, antioxidant, and anti-tumor functions, but its poor water solubility and stability limit its applications in foods as a functional component. In this study, the nanocomposites loading luteolin (Lut) with soybean protein isolate (SPI), soluble soybean polysaccharide (SSPS) and/or rhamnolipid (Rha) were prepared by layer-by-layer shelf assembly method, and their properties were also evaluated. The results showed that Rha/SPI/Lut had the smallest particle size (206.24 nm) and highest loading ratio (8.03 µg/mg) while Rha/SSPS/SPI/Lut had the highest encapsulation efficiency (82.45 %). Rha interacted with SPI through hydrophobic interactions as the main driving force, while SSPS attached to SPI with only hydrogen bonding. Furthermore, the synergistic effect between Rha and SSPS was observed in Rha/SSPS/SPI/Lut complex, in consequence, it had the best thermal and storage stability, and the slowest release in gastrointestinal digestion. Thus, this approach provided an alternative way for the application of luteolin in functional foods.


Assuntos
Digestão , Luteolina , Tamanho da Partícula , Proteínas de Soja , Luteolina/química , Proteínas de Soja/química , Nanocompostos/química , Polissacarídeos/química , Interações Hidrofóbicas e Hidrofílicas , Glycine max/química , Solubilidade , Alimento Funcional , Trato Gastrointestinal/metabolismo
3.
Food Chem ; 455: 139841, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38824724

RESUMO

Microcrystalline cellulose was modified by TEMPO oxidation combined with ultrasound to prepare modified cellulose-based emulsion. The effect of different emulsion concentration on gel properties and protein conformation of surimi was investigated. The results showed the length and width of microcrystalline cellulose were reduced, and a large amount of -COOH was introduced into modified cellulose. Direct addition of flaxseed oil decreased the gel strength and WHC from 3640.49 g·mm and 76.94% to 2702.95 g·mm and 75.89%, respectively, while 5% modified cellulose-based emulsion could improve the gel properties of surimi. Surimi gel containing 5% emulsion had the highest hydrophobic interaction, disulfide bond and ß-sheet content. Moreover, protein network structure was the densest in 5% emulsion group. Therefore, modified cellulose-based emulsion could be used to compensating for the negative impact of direct addition of flaxseed oil on surimi, which provided a new idea for the development of healthy and new emulsified surimi products.


Assuntos
Celulose , Emulsões , Produtos Pesqueiros , Géis , Celulose/química , Emulsões/química , Animais , Géis/química , Produtos Pesqueiros/análise , Conformação Proteica , Proteínas de Peixes/química , Interações Hidrofóbicas e Hidrofílicas
4.
Int J Biol Macromol ; 268(Pt 1): 131699, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38642689

RESUMO

Starch and peanut oil (PO) were widely used to improve the gel properties of surimi, however, the impact mechanism of addition forms on the denaturation and aggregation behavior of myofibrillar protein (MP) is not clear. Therefore, the effect of starch, PO, starch/PO mixture, and starch-based emulsion on the physicochemical and gel properties of MP was investigated. The results showed that amylose could accelerate the aggregation of MP, while amylopectin was conducive to the improvement of gel properties. The addition of PO, starch/PO mixture, or starch-based emulsion increased the turbidity, solubility, sulfhydryl content of MP, and improved the gel strength, whiteness, and texture of MP gel. However, compared with starch/PO mixture group, the gel strength of MP with waxy, normal and high amylose corn starch-based emulsion increased by 22.68 %, 10.27 %, and 32.89 %, respectively. The MP containing emulsion had higher storage modulus than MP with starch/PO mixture under the same amylose content. CLSM results indicated that the oil droplets aggregated in PO or starch/PO mixture group, while emulsified oil droplets filled the protein gel network more homogeneously. Therefore, the addition of starch and PO in the form of emulsion could effectively play the filling role to improve the gel properties of MP.


Assuntos
Amilose , Emulsões , Géis , Óleo de Amendoim , Amido , Amilose/química , Amilose/análise , Óleo de Amendoim/química , Amido/química , Géis/química , Emulsões/química , Proteínas Musculares/química , Fenômenos Químicos , Solubilidade , Miofibrilas/química
5.
Food Chem ; 446: 138903, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38452507

RESUMO

Cryoprotective effect and potential mechanism of soluble soybean polysaccharides (SSPS) and enzymatic hydrolysates on surimi was investigated. After hydrolysis, the molecular weight of SSPS significantly decreased, and the hydrolysates prepared by endo-polygalacturonase (EPG-SSPS) was the lowest (154 kDa). Infrared spectrum analysis revealed that enzymatic hydrolysis didn't alter the functional groups of SSPS, but it did augment the exposure to hydroxyl groups. Surimi containing 5 % EPG-SSPS had the lowest freezable water after 20 days of frozen storage. Furthermore, the 5 % EPG-SSPS group manifested the highest metrics in total sulfhydryl (8.0 × 10-5 mol/g), active sulfhydryl content (6.7 × 10-5 mol/g), Ca2+-ATPase activity, and exhibited the lowest level in carbonyl content, surface hydrophobicity (153 µg). Notably, the 5 % EPG-SSPS maintained the stability of protein structure. Conclusively, SSPS enzymatic hydrolysate using endo-polygalacturonase imparted superior cryoprotective effect on the myofibrillar protein of surimi, and the mechanism might be a decrease in molecular weight and exposure of hydroxyl groups.


Assuntos
Crioprotetores , Glycine max , Animais , Crioprotetores/química , Poligalacturonase , Polissacarídeos/farmacologia , Polissacarídeos/química , Congelamento , Peixes , Hidrolisados de Proteína/química
6.
Fish Physiol Biochem ; 50(3): 927-939, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38305929

RESUMO

Temperature fluctuations are inevitable and have an important impact on the survival of fish during transportation. Therefore, the effect of temperature fluctuation (15 ± 1 °C, 15 ± 2 °C, 15 ± 3 °C) on the muscle quality, physiological, and immune function of hybrid pearl gentian grouper before waterless keeping alive, during keeping alive (0 h, 3 h, 6 h, 9 h, 12 h), and after revival for 12 h was investigated. The plasma glucose concentration of grouper gradually decreased to 0.645 ± 0.007 mg/mL, 0.657 ± 0.006 mg/mL, and 0.677 ± 0.004 mg/mL after keeping alive for 12 h under different temperature fluctuations of 15 ± 1 °C, 15 ± 2 °C, and 15 ± 3 °C, respectively. The cortisol concentration and lysozyme activity of pearl gentian grouper significantly increased (P < 0.05) during the keeping alive period. The results suggested that fish bodies would produce acute stress response, strengthen immune defense ability, and quickly consume a lot of energy to adapt to the low-temperature anhydrous environment. In all treatment groups, the activities of plasma alanine transaminase (ALT) and aspartate aminotransferase (AST) and the content of creatinine gradually increased with the prolongation of the survival time. The hardness and springiness of muscle decreased from 5965.99 ± 20.15 and 0.90 ± 0.00 to 3490.69 ± 27.59 and 0.42 ± 0.01, respectively. In the meanwhile, the change of glycogen and lactic acid content was opposite, indicating that temperature fluctuation harmed the liver, kidney function, and muscle quality. In the later stage of keeping alive, the superoxide dismutase (SOD) and catalase (CAT) activities decreased, especially in the temperature fluctuation group of ±3 °C (125.99 ± 5.48 U/mgprot, 44.21 ± 0.63 U/mgprot), leading to an imbalance of fish immunity. In summary, higher temperature fluctuation would influence the physiological function and immune defense ability and decrease the quality of pearl gentian grouper.


Assuntos
Estresse Fisiológico , Temperatura , Animais , Hidrocortisona/sangue , Glicemia , Bass/fisiologia , Muramidase/sangue , Muramidase/metabolismo , Aspartato Aminotransferases/sangue , Alanina Transaminase/sangue , Músculos/metabolismo , Creatinina/sangue
7.
Int J Biol Macromol ; 259(Pt 1): 129183, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38176498

RESUMO

The emulsion was prepared with peanut oil and corn starch with different amylose content using high-speed homogenization assisted high-pressure homogenization, and the effect of starch-based emulsion on the gel properties, whiteness, microstructure, protein secondary structure, chemical forces, texture and sensory properties of Nemipterus virgatus surimi was investigated. The results showed that high amylose corn starch was more beneficial to the stability of emulsion than normal and waxy starch. The gel strength, water holding capacity and texture properties of surimi were significantly improved by adding 10 % waxy corn starch-based emulsion or 15 % high amylose or normal corn starch-based emulsion. Moreover, the whiteness of surimi gel containing starch-based emulsion was higher, and the microstructure was more compact and delicate than that of surimi without emulsion. The addition of starch-based emulsion could increase the hydrophobic interaction and disulfide bond content, and promote the transformation of protein secondary structure to irregular direction. The sensory properties such as color, texture, taste and overall acceptability could be improved to varying degrees. Therefore, starch-based emulsion could be used to enhance the gel properties and nutritional value of surimi products.


Assuntos
Amilose , Amido , Animais , Amilose/química , Amido/química , Emulsões , Géis/química , Peixes , Amilopectina
8.
J Food Sci ; 88(7): 3007-3021, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37248780

RESUMO

The synergistic effects of the combination of ultrahigh pressure (UHP) with allicin on the gel properties, flavor characteristics, and myosin structure of scallops were investigated. The results indicated that chewiness reached maximum, uniform, and dense microstructures at B-300 MPa, and scallops with favorable gel properties. In addition, the electronic nose and tongue could clearly distinguish the olfactory and gustatory properties of scallops, and the interaction of UHP and allicin increased the variety of volatile compounds in scallops, which mainly included 1-hydroxy-2-propanone, 1-hexenal, 2-butanone-D, and 1-octen-3-ol. The main performance was fruit aroma and a plantlike aroma and mushroomlike odor. UHP and allicin changed the microenvironment of tryptophan residues, and allicin formed larger aggregates by forming disulfides with myosin. The sodium dodecyl sulfate-polyacrylamide gel electrophoresis results could show that myosin had low degradation in B-300 MPa. Thus, comprehensively viewed, UHP and allicin play a role in gel formation of myosin from obturator muscle at 300 MPa, whereas allicin and myosin form disulfides as the main factor of myosin gelation. PRACTICAL APPLICATION: To enhance the diversity of scallop preparation methods and improve the quality of the obtained product, UHP and allicin treatment result in scallops with satisfactory chewiness and flavor, which provides application prospects for scallop processing.


Assuntos
Pectinidae , Animais , Pectinidae/química , Miosinas/metabolismo , Músculo Esquelético/metabolismo , Dissulfetos
9.
Food Chem ; 417: 135821, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-36934711

RESUMO

The effects of different amount (0-12%) of chickpea protein-stabilized Pickering emulsion (CPE) on the gelling properties, intermolecular interactions, microstructure, and physicochemical stability of hairtail fish myosin gels were investigated. The myosin gel with 6%-9% CPE demonstrated significantly higher viscoelasticity, gel strength, hardness, water-holding capacity and whiteness, compared to the control (P < 0.05). In addition, Raman spectroscopy showed that CPE changed the microenvironment of the myosin, which promoted the changes in protein secondary structures, disulfide bond conformation and the local environments of the composite gels. The addition of 6%-9% CPE also enhanced the disulfide bond and hydrophobic interaction of myosin gels which induced more compact gel network structures. Furthermore, CPE improved the lipid oxidative stability and freeze-thaw stability of myosin gel. The results indicated that CPE could improve the gelling properties of myosin, making it a potential new additive and lipid substitute for the development of new emulsion gel products.


Assuntos
Cicer , Animais , Emulsões/química , Géis/química , Miosinas , Dissulfetos , Lipídeos
10.
Food Funct ; 14(1): 160-170, 2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36477011

RESUMO

We identified novel antioxidant peptides from Pacific saury (Cololabis saira). Enzymatic hydrolysates were isolated, purified, and identified by ultrafiltration, gel chromatography, reverse phase high-performance liquid chromatography (RP-HPLC), and matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry (MS). Twenty putative peptides were identified from five components of HPLC, among which sixteen peptides were predicted to have good water solubility and non-toxicity by online tools. Fifteen peptides were successfully docked with myeloperoxidase, and we observed that Arg31, Arg323, and Lys505 played a key role in the antioxidant mechanism, with van der Waals forces and conventional hydrogen bonds as important interaction forces. Six identified peptides with lower CDOCKER energy values were synthesized to verify the antioxidant activity, and the results showed that the synthetic peptide QQAAGDKIMK displayed the strongest 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging rate (31.05 ± 0.27%) and reducing power (0.29 ± 0.01). The synthetic peptide KDEPDQASSK at a concentration of 300 µg mL-1 exhibited the strongest protective effects on H2O2-induced oxidative damage of HEK-293 cells, with cell viability and ROS level of 0.38 ± 0.03 and 0.08 ± 0.01, respectively.


Assuntos
Antioxidantes , Peróxido de Hidrogênio , Humanos , Antioxidantes/química , Peróxido de Hidrogênio/toxicidade , Simulação de Acoplamento Molecular , Células HEK293 , Peptídeos/química , Estresse Oxidativo
11.
J Sci Food Agric ; 103(4): 1856-1863, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36305101

RESUMO

BACKGROUND: The influence of low oxygen on the biosynthesis of aroma-related esters and alcohols in strawberries has been well revealed. However, how low-oxygen conditions affect other volatile compounds, such as terpenes and furans, is still to be elucidated. RESULTS: The effects of 2 kPa O2 low oxygen on the biosynthesis of aroma in 'Benihoppe' strawberries were comprehensively investigated in this study. The results showed that, like esters, the accumulations of key terpene alcohols and furans in strawberries were also inhibited by 2 kPa O2 low oxygen during storage and subsequent shelf life, which was associated with the down-regulation of expression of FaNES1 (nerolidol synthase) and FaOMT (O-methyltransferase). However, no anaerobic fermentation occurred in 'Benihoppe' strawberries since no ethanol and acetaldehyde were produced under the 2 kPa O2 condition. As expected, the 2 kPa O2 condition suppressed the respiratory intensity and lowered the energy charge to maintain the quality of strawberries. The negative effects of low-oxygen storage on aroma accumulations and the energy charge of strawberries were more pronounced when transferred to the period of shelf life. CONCLUSION: The 2 kPa O2 condition caused a full-scale loss of aroma in 'Benihoppe' strawberries, including esters and alcohols as well as terpenes and furans, which was mainly reflected in the reduction of aroma emissions rather than the production of off-flavor, probably due to the reduced expressions of related genes and energy charge. © 2022 Society of Chemical Industry.


Assuntos
Fragaria , Compostos Orgânicos Voláteis , Odorantes , Fragaria/genética , Fragaria/química , Oxigênio/análise , Frutas/genética , Frutas/química , Etanol/análise , Terpenos/análise , Ésteres/análise , Expressão Gênica , Compostos Orgânicos Voláteis/química
12.
Food Chem ; 404(Pt A): 134530, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36223669

RESUMO

Repeated freezing and thawing due to temperature fluctuations irreversibly damage the muscle tissue cells of fish, thereby reducing their economic quality. In this study, the effects of ultrasound-assisted immersed freezing (UIF) technology on the changes in the quality of large yellow croaker (Pseudosciaena crocea) subjected to 0 to 5 freeze-thaw cycles were investigated. The results showed that the quality deterioration inevitably occurred after repeated freeze-thaw cycles. However, UIF significantly delayed the changes in the water holding capacity (WHC), immobilized water content, color and texture properties of fish. Compared to the control group (air freezing, AF), the thawing loss in the UIF group was reduced by 1.09 % to 4.54 % (P < 0.05), the centrifuging loss was reduced by 0.39 % to 1.86 % (P < 0.05), the migration of immobilized water content was reduced by 4 % to 5 % (P < 0.05). Moreover, SEM and LM images illustrated that the microstructures of muscle tissue in UIF group were more uniform and denser than that of the AF group after freeze-thaw cycles, and that the ice crystal size from UIF group were smaller and more regular than that of AF group. Furthermore, UIF did not caused more excessive protein oxidation of myofibrillary protein, but significantly delayed the lipid oxidation of fish muscle. The results indicated that UIF technology effectively inhibits the deterioration of fish quality affected by multiple freeze-thaw cycles, thus providing a reference for controlling the deterioration of aquatic products due to temperature fluctuations in the industry.


Assuntos
Perciformes , Animais , Congelamento , Água/química , Músculos , Proteínas
13.
J Food Sci ; 87(9): 3900-3912, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35894520

RESUMO

In the present study, egg white protein (EWP) and myofibrillar protein (MP) were mixed in different ratios (0/100, 10/90, 20/80, 30/70, 40/60, 50/50, 100/0 for EWP/MP) and subjected to unheated, preheated (40°C/30 min), two-step heated (40°C/30 min, 90°C/20 min), and one-step heated (90°C/20 min) treatments to study the thermal aggregation of the two proteins. Their aggregation behavior was characterized by turbidity, active sulfhydryl, degree of protein cross-linking, protein characteristic spectra, and microscopic morphology. The results indicated that for the mixed protein system composed of EWP and MP, the mixed protein aggregation volume was larger and regular at an EWP/MP of 30/70, when the degree of cross-linking was best. When the ratio of EWP/MP was 50/50, the aggregate-protein interaction was dominant, and the excess EWP acted as a barrier to cross-linking and wrapped around the surface of the aggregates to form larger aggregates. Comparing the two-step heated and one-step heated conditions, the former is superior. PRACTICAL APPLICATION: The combination of egg white protein and myofibrillar protein can provide a theoretical reference for the protein content in surimi products, and moderate addition has an enhancing effect on surimi protein cross-linking and promotes gel formation. Excessive addition will form aggregates outside the egg white protein wrapping phenomenon, and the quality of surimi gel products will be affected.


Assuntos
Perciformes , Agregados Proteicos , Animais , Proteínas do Ovo , Temperatura Alta
14.
J Texture Stud ; 53(4): 563-576, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35580190

RESUMO

The use of egg white powder (EWP) to enhance the physicochemical properties, molecular structure, and thermal stability of Decapterus maruadsi mince gels was investigated. The thermal stability was analyzed by adding spray-dried EWP (0, 0.2, 0.4, 0.6, 0.8, and 1%) to the mince, and mince gels were prepared to study the changes in their fracture constant, water distribution, microstructure, and protein conformation of mince gels. In addition, the stress-strain curve of the EWP-mince gel was measured to obtain its compressive modulus (E). The formation of the mince gel was promoted by EWP, and the whiteness, fracture constant, water-holding capacity (WHC), and immobilized water were all enhanced. At 0.8% addition of EWP, the fracture constant increased from 176.715 ± 2.463 N/m to 348.631 ± 3.144 N/m (p < .05), which was a nearly twofold improvement. Additionally, the WHC increased from 75.21% to 79.99%, and the percentage of immobilized water increased from 94.03% to 94.91%. The EWP-mince gel network structure was the most uniform and dense, and there were increases in hydrogen bonds, disulfide bonds, ß-sheets, and ß-turns in mince gels, as well as the storage modulus (G') and enthalpy (ΔH). In contrast to the control group, the relative content of α-helixes decreased from 53.34% to 37.09% and transformed into other secondary structures, and the bulk water and cooking loss also decreased to 2.41% and 8.51%, respectively. Consequently, EWP effectively improved the quality of mince products, and the effect was most apparent when 0.8% was added.


Assuntos
Clara de Ovo , Perciformes , Animais , Clara de Ovo/química , Géis/química , Pós , Água
15.
Food Chem ; 362: 130253, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34116429

RESUMO

The effect of high amylose corn starch (HAS)-fatty acid complexes on the gel properties, protein secondary structure, microstructure, fatty acid content, and sensory properties of surimi under high-temperature treatment were investigated. The formation of HAS-fatty acid complexes increased melting temperature and decreased average particle size of HAS. The addition of HAS-fatty acid complexes significantly improved the breaking force, deformation and whiteness of surimi gels. The water in surimi gels containing HAS or HAS-fatty acid complexes became increasingly immobilized. HAS or HAS-fatty acid complexes promoted protein conformational transition from α-helix structure to other three secondary structure. Surimi gels added with HAS-fatty acid complexes had more compact network structure and higher fatty acid content. Moreover, the better sensory properties were obtained in surimi gels containing HAS-fatty acid complexes. Therefore, starch-fatty acid complexes not only could improve the gel properties of surimi, but also enhance its fatty acid content.


Assuntos
Ácidos Graxos/química , Produtos Pesqueiros/análise , Produtos Pesqueiros/normas , Peixes , Aditivos Alimentares/química , Géis/química , Temperatura Alta , Amido/química , Animais , Ácidos Graxos/análise , Proteínas de Peixes/química
16.
Foods ; 11(1)2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-35010193

RESUMO

Decapterus maruadsi surimi products were prepared using the thermal treatment methods of boiling (BOI), steaming (STE), back-pressure sterilization (BAC), roasting (ROA), microwaving (MIC), and frying (FRI), respectively. The effect of glutamine transaminase (TGase) addition was also investigated. The moisture distribution, water retention, microstructure, color, fracture constant, protein secondary structure, chemical forces, and flavor components of each sample were determined. The differences in gel and favor characteristics between D. maruadsi surimi products caused by thermal treatment methods were analyzed. The results showed that BOI, STE, and FRI had the largest protein secondary structure transitions and formed dense gel structures with high fracture constant. The kinds of flavour components in BOI and STE were completer and more balanced. The high temperature treatment available at BAC and FRI (110 °C and 150 °C) accelerated the chemical reaction involved in flavor formation, which highlighted the flavor profiles dominated by furans or esters. The open thermal treatment environments of ROA, MIC, and FRI gave them a low moisture content and water loss. This allowed the MIC to underheat during the heat treatment, which formed a loose gel structure with a low fracture coefficient. The addition of TGase enhances the gel quality, most noticeably in the ROA. The aldehyde content of the FRI was enhanced in the flavor characteristic. The effect of adding TGase to enhance the quality of the gel is most evident in ROA. It also substantially increased the content of aldehydes in FRI. In conclusion, different heat treatments could change the gel characteristics of surimi products and provide different flavor profiles. The gel quality of BOI and STE was consistently better in all aspects.

17.
J Sci Food Agric ; 100(5): 2252-2260, 2020 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-31917477

RESUMO

BACKGROUND: Hydrocolloids are the most commonly used additive in the processing of surimi products. However, the effect of hydrocolloids on surimi protein conformation has not been reported, and the level of hydrocolloids may be a key factor influencing the quality of surimi. Therefore, this study investigated the effect of curdlan, xanthan gum, κ-carrageenan, and gelatin at various levels on gel properties and protein conformation of surimi from silver carp. RESULTS: Addition of curdlan, κ-carrageenan, or gelatin at lower level could significantly promote gel strength, textural profiles, and water holding capacity (WHC) of the surimi gels. However, gel strength and WHC gradually decreased with increasing amount of xanthan gum added. The addition of curdlan or κ-carrageenan remarkably increased the whiteness of surimi gel, but the whiteness decreased when the concentration of κ-carrageenan reached 5 g kg-1 . Along with the increase of curdlan, κ-carrageenan, or gelatin concentration, the index of hydrophobic interaction and hydrogen bonds first increased and then decreased, whereas index of ionic bonds first decreased and then increased. According to Raman spectroscopy data, a small content of curdlan or κ-carrageenan promoted the conformational transition of surimi protein from α-helix to ß-sheet, leading to the changes in gel properties of surimi gels. Scanning electron microscopy photographs showed surimi gels added with 4 g kg-1 curdlan or 2 g kg-1 κ-carrageenan had a finer and denser network structure. CONCLUSION: Curdlan or κ-carrageenan at an appropriate concentration is a potential modifier to effectively improve the quality of surimi products. © 2020 Society of Chemical Industry.


Assuntos
Carpas , Coloides/química , Proteínas de Peixes/química , Géis/química , Animais , Carragenina/química , Produtos Pesqueiros/análise , Aditivos Alimentares/química , Manipulação de Alimentos/métodos , Gelatina/química , Interações Hidrofóbicas e Hidrofílicas , Polissacarídeos Bacterianos , Estrutura Secundária de Proteína , Água
18.
Food Chem ; 312: 126053, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-31884298

RESUMO

To understand the delicious taste of the clam M. meretrix Linnaeus, the putative umami peptides from the aqueous extract of the cooked clam were obtained by ultrafiltration, gel filtration chromatography, and reversed-phase high-performance liquid chromatography. The isolated peptide fraction with the most intense umami taste was screened by sensory and electronic tongue analysis. Seven novel peptides, GLLPDGTPR, RPNPFENR, STMLLESER, ANPGPVRDLR, QVAIAHRDAK, VLPTDQNFILR, and VTADESQQDVLK, were identified and synthesized to verify their taste characteristics. The taste activity prediction and the sensory evaluation of the synthetic peptides revealed that those peptides were umami and umami-enhancing peptides. Docking of the synthesized peptides with the umami taste receptor T1R1/T1R3 indicated that the peptides could enter the binding pocket in the Venus flytrap domain of the T1R3 cavity, wherein Asp196 and Glu128 may play key roles in the synergism of umami taste and hydrogen bonding and electrostatic interactions are important interaction forces.


Assuntos
Bivalves/química , Peptídeos/química , Paladar , Animais , Bivalves/metabolismo , Cromatografia em Gel , Nariz Eletrônico , Simulação de Acoplamento Molecular , Peptídeos/metabolismo
19.
J Texture Stud ; 50(6): 571-581, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31286513

RESUMO

The study investigated the effect of native cassava starch (NCS), hydroxypropylated starch, acetic acid esterification starch (AAES), acetylated distarch phosphate on gel properties and protein conformation of Nemipterus virgatus surimi. Addition of 10 g kg-1 NCS or 20 g kg-1 AAES could significantly promote the gel strength and textural profiles of the surimi gels (p < .05). The water holding ability and whiteness of surimi were remarkably increased when the four types of starch were added at all concentrations (p < .05). In rheological test, the lower G' was observed in surimi samples added with starch at low temperature, suggesting starch played an inactive filler role in surimi. Along with the increase of starch additive amount, ionic bond and hydrophobic interaction first increased and then decreased, while hydrogen bond first decrease and then increased. According to Raman spectroscopy data, small content of starch promoted the heat-induced conformational transition of surimi protein from α-helix to ß-sheet, leading to the change in gel properties of surimi gels. Scanning electron microscopy photographs showed surimi gels added with 20 g kg-1 starch had the finer and denser network structure. Therefore, 20 g kg-1 AAES or 10 g kg-1 NCS or 10 g kg-1 HS could be proposed to a potential modifier to effectively improve the quality of surimi products.


Assuntos
Produtos Pesqueiros/análise , Proteínas de Peixes/química , Manipulação de Alimentos , Géis/química , Amido/química , Animais , Peixes , Interações Hidrofóbicas e Hidrofílicas , Microscopia Eletrônica de Varredura , Conformação Proteica , Conformação Proteica em alfa-Hélice , Reologia , Análise Espectral Raman , Água/análise
20.
J Sci Food Agric ; 99(11): 5028-5034, 2019 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-30989657

RESUMO

BACKGROUND: The influence of heat-induced structural modifications of grass carp myofibrillar protein (MP) on its ability to bind to selected aldehydes (hexanal, heptanal, octanal and nonanal) was investigated. The interactions of MP and flavor compounds were investigated using HS-GC-MS, intrinsic fluorescence spectra, Raman spectra, SDS-PAGE, turbidity, total sulfhydryl content and surface hydrophobicity. RESULTS: The ability to bind to aldehydes was strongly influenced by changes in the structure and surface of proteins during the heating process (0-30 min). During the first 0-10 min of heating, the flavor-binding ability increased, which is likely attributable to increased surface hydrophobicity and total sulfhydryl content, and to the unfolding of secondary structures of MP by exposure to reactive amino acids, sulfhydryl groups and hydrophobic bonding sites. Nevertheless, lengthy heating (>10 min) caused protein refolding and accelerated aggregation of protein, thus reducing hydrophobic interactions and weakening the resultant capacity of MP to bind to flavor compounds. CONCLUSION: The results suggested that hydrophobic interactions were enhanced upon short-term heating, whereas long-term heating weakend them. The results provide information concerning improvement of the flavor profile of freshwater fish surimi products. © 2019 Society of Chemical Industry.


Assuntos
Aldeídos/metabolismo , Cyprinidae , Temperatura Alta , Proteínas Musculares/metabolismo , Miofibrilas/química , Animais , Eletroforese em Gel de Poliacrilamida , Cromatografia Gasosa-Espectrometria de Massas , Interações Hidrofóbicas e Hidrofílicas , Estrutura Molecular , Proteínas Musculares/química , Ligação Proteica , Espectrometria de Fluorescência , Análise Espectral Raman , Compostos de Sulfidrila/análise , Paladar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA