Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.238
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 171(5): 1206-1220.e22, 2017 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-29149607

RESUMO

The definition of neuronal type and how it relates to the transcriptome are open questions. Drosophila olfactory projection neurons (PNs) are among the best-characterized neuronal types: different PN classes target dendrites to distinct olfactory glomeruli, while PNs of the same class exhibit indistinguishable anatomical and physiological properties. Using single-cell RNA sequencing, we comprehensively characterized the transcriptomes of most PN classes and unequivocally mapped transcriptomes to specific olfactory function for six classes. Transcriptomes of closely related PN classes exhibit the largest differences during circuit assembly but become indistinguishable in adults, suggesting that neuronal subtype diversity peaks during development. Transcription factors and cell-surface molecules are the most differentially expressed genes between classes and are highly informative in encoding cell identity, enabling us to identify a new lineage-specific transcription factor that instructs PN dendrite targeting. These findings establish that neuronal transcriptomic identity corresponds with anatomical and physiological identity defined by connectivity and function.


Assuntos
Drosophila melanogaster/metabolismo , Neurônios/metabolismo , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Animais , Encéfalo/citologia , Encéfalo/metabolismo , Análise por Conglomerados , Dendritos/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Bulbo Olfatório/citologia , Bulbo Olfatório/metabolismo , Especificidade de Órgãos , Pupa/citologia , Pupa/metabolismo , Fatores de Transcrição/metabolismo
2.
Nature ; 612(7940): 488-494, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36450990

RESUMO

Insect societies are tightly integrated, complex biological systems in which group-level properties arise from the interactions between individuals1-4. However, these interactions have not been studied systematically and therefore remain incompletely known. Here, using a reverse engineering approach, we reveal that unlike solitary insects, ant pupae extrude a secretion derived from the moulting fluid that is rich in nutrients, hormones and neuroactive substances. This secretion elicits parental care behaviour and is rapidly removed and consumed by the adults. This behaviour is crucial for pupal survival; if the secretion is not removed, pupae develop fungal infections and die. Analogous to mammalian milk, the secretion is also an important source of early larval nutrition, and young larvae exhibit stunted growth and decreased survival without access to the fluid. We show that this derived social function of the moulting fluid generalizes across the ants. This secretion thus forms the basis of a central and hitherto overlooked interaction network in ant societies, and constitutes a rare example of how a conserved developmental process can be co-opted to provide the mechanistic basis of social interactions. These results implicate moulting fluids in having a major role in the evolution of ant eusociality.


Assuntos
Formigas , Líquidos Corporais , Muda , Pupa , Comportamento Social , Animais , Formigas/crescimento & desenvolvimento , Formigas/fisiologia , Larva/fisiologia , Muda/fisiologia , Pupa/fisiologia , Líquidos Corporais/fisiologia
3.
Genes Dev ; 34(9-10): 701-714, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32165409

RESUMO

Metabolism and development must be closely coupled to meet the changing physiological needs of each stage in the life cycle. The molecular mechanisms that link these pathways, however, remain poorly understood. Here we show that the Drosophila estrogen-related receptor (dERR) directs a transcriptional switch in mid-pupae that promotes glucose oxidation and lipogenesis in young adults. dERR mutant adults are viable but display reduced locomotor activity, susceptibility to starvation, elevated glucose, and an almost complete lack of stored triglycerides. Molecular profiling by RNA-seq, ChIP-seq, and metabolomics revealed that glycolytic and pentose phosphate pathway genes are induced by dERR, and their reduced expression in mutants is accompanied by elevated glycolytic intermediates, reduced TCA cycle intermediates, and reduced levels of long chain fatty acids. Unexpectedly, we found that the central pathways of energy metabolism, including glycolysis, the tricarboxylic acid cycle, and electron transport chain, are coordinately induced at the transcriptional level in mid-pupae and maintained into adulthood, and this response is partially dependent on dERR, leading to the metabolic defects observed in mutants. Our data support the model that dERR contributes to a transcriptional switch during pupal development that establishes the metabolic state of the adult fly.


Assuntos
Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila/genética , Drosophila/metabolismo , Glicólise/genética , Lipogênese/genética , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Transcrição Gênica/genética , Animais , Drosophila/crescimento & desenvolvimento , Mutação , Pupa , Transcriptoma
4.
Development ; 151(20)2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38477641

RESUMO

Clarifying the mechanisms underlying shape alterations during insect metamorphosis is important for understanding exoskeletal morphogenesis. The large horn of the Japanese rhinoceros beetle Trypoxylus dichotomus is the result of drastic metamorphosis, wherein it appears as a rounded shape during pupation and then undergoes remodeling into an angular adult shape. However, the mechanical mechanisms underlying this remodeling process remain unknown. In this study, we investigated the remodeling mechanisms of the Japanese rhinoceros beetle horn by developing a physical simulation. We identified three factors contributing to remodeling by biological experiments - ventral adhesion, uneven shrinkage, and volume reduction - which were demonstrated to be crucial for transformation using a physical simulation. Furthermore, we corroborated our findings by applying the simulation to the mandibular remodeling of stag beetles. These results indicated that physical simulation applies to pupal remodeling in other beetles, and the morphogenic mechanism could explain various exoskeletal shapes.


Assuntos
Besouros , Animais , Japão , Simulação por Computador , Mandíbula , Pupa
5.
Development ; 151(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38533736

RESUMO

How complex organs coordinate cellular morphogenetic events to achieve three-dimensional (3D) form is a central question in development. The question is uniquely tractable in the late Drosophila pupal retina, where cells maintain stereotyped contacts as they elaborate the specialized cytoskeletal structures that pattern the apical, basal and longitudinal planes of the epithelium. In this study, we combined cell type-specific genetic manipulation of the cytoskeletal regulator Abelson (Abl) with 3D imaging to explore how the distinct cellular morphogenetic programs of photoreceptors and interommatidial pigment cells (IOPCs) organize tissue pattern to support retinal integrity. Our experiments show that photoreceptor and IOPC terminal differentiation is unexpectedly interdependent, connected by an intercellular feedback mechanism that coordinates and promotes morphogenetic change across orthogonal tissue planes to ensure correct 3D retinal pattern. We propose that genetic regulation of specialized cellular differentiation programs combined with inter-plane mechanical feedback confers spatial coordination to achieve robust 3D tissue morphogenesis.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila melanogaster/genética , Proteínas de Drosophila/genética , Pupa , Retroalimentação , Retina , Morfogênese/genética
6.
Annu Rev Genet ; 53: 67-91, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31283358

RESUMO

Cell-cell fusion is indispensable for creating life and building syncytial tissues and organs. Ever since the discovery of cell-cell fusion, how cells join together to form zygotes and multinucleated syncytia has remained a fundamental question in cell and developmental biology. In the past two decades, Drosophila myoblast fusion has been used as a powerful genetic model to unravel mechanisms underlying cell-cell fusion in vivo. Many evolutionarily conserved fusion-promoting factors have been identified and so has a surprising and conserved cellular mechanism. In this review, we revisit key findings in Drosophila myoblast fusion and highlight the critical roles of cellular invasion and resistance in driving cell membrane fusion.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila/citologia , Mioblastos/citologia , Actinas/metabolismo , Actomiosina/metabolismo , Animais , Moléculas de Adesão Celular/metabolismo , Fusão Celular , Drosophila/embriologia , Drosophila/fisiologia , Proteínas de Drosophila/genética , Embrião não Mamífero/citologia , Bicamadas Lipídicas/metabolismo , Músculos/citologia , Músculos/embriologia , Mioblastos/fisiologia , Pupa/citologia
7.
Nature ; 589(7840): 88-95, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33149298

RESUMO

Deciphering how neuronal diversity is established and maintained requires a detailed knowledge of neuronal gene expression throughout development. In contrast to mammalian brains1,2, the large neuronal diversity of the Drosophila optic lobe3 and its connectome4-6 are almost completely characterized. However, a molecular characterization of this neuronal diversity, particularly during development, has been lacking. Here we present insights into brain development through a nearly complete description of the transcriptomic diversity of the optic lobes of Drosophila. We acquired the transcriptome of 275,000 single cells at adult and at five pupal stages, and built a machine-learning framework to assign them to almost 200 cell types at all time points during development. We discovered two large neuronal populations that wrap neuropils during development but die just before adulthood, as well as neuronal subtypes that partition dorsal and ventral visual circuits by differential Wnt signalling throughout development. Moreover, we show that the transcriptomes of neurons that are of the same type but are produced days apart become synchronized shortly after their production. During synaptogenesis we also resolved neuronal subtypes that, although differing greatly in morphology and connectivity, converge to indistinguishable transcriptomic profiles in adults. Our datasets almost completely account for the known neuronal diversity of the Drosophila optic lobes, and serve as a paradigm to understand brain development across species.


Assuntos
Drosophila melanogaster/citologia , Drosophila melanogaster/crescimento & desenvolvimento , Neurônios/classificação , Neurônios/metabolismo , Lobo Óptico de Animais não Mamíferos/citologia , Lobo Óptico de Animais não Mamíferos/crescimento & desenvolvimento , Anatomia Artística , Animais , Apoptose , Atlas como Assunto , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Neurônios/citologia , Pupa/citologia , Pupa/crescimento & desenvolvimento , Análise de Célula Única , Sinapses/metabolismo , Transcriptoma/genética , Vias Visuais , Via de Sinalização Wnt
8.
PLoS Genet ; 20(4): e1011232, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38669270

RESUMO

Animals often grow and develop in unpredictable environments where factors like food availability, temperature, and oxygen levels can fluctuate dramatically. To ensure proper sexual maturation into adulthood, juvenile animals need to adapt their growth and developmental rates to these fluctuating environmental conditions. Failure to do so can result in impaired maturation and incorrect body size. Here we describe a mechanism by which Drosophila larvae adapt their development in low oxygen (hypoxia). During normal development, larvae grow and increase in mass until they reach critical weight (CW), after which point a neuroendocrine circuit triggers the production of the steroid hormone ecdysone from the prothoracic gland (PG), which promotes maturation to the pupal stage. However, when raised in hypoxia (5% oxygen), larvae slow their growth and delay their maturation to the pupal stage. We find that, although hypoxia delays the attainment of CW, the maturation delay occurs mainly because of hypoxia acting late in development to suppress ecdysone production. This suppression operates through a distinct mechanism from nutrient deprivation, occurs independently of HIF-1 alpha and does not involve dilp8 or modulation of Ptth, the main neuropeptide that initiates ecdysone production in the PG. Instead, we find that hypoxia lowers the expression of the EGF ligand, spitz, and that the delay in maturation occurs due to reduced EGFR/ERK signaling in the PG. Our study sheds light on how animals can adjust their development rate in response to changing oxygen levels in their environment. Given that hypoxia is a feature of both normal physiology and many diseases, our findings have important implications for understanding how low oxygen levels may impact animal development in both normal and pathological situations.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Ecdisona , Fator de Crescimento Epidérmico , Larva , Transdução de Sinais , Animais , Ecdisona/metabolismo , Larva/crescimento & desenvolvimento , Larva/genética , Larva/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Fator de Crescimento Epidérmico/metabolismo , Fator de Crescimento Epidérmico/genética , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Hipóxia/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Receptores ErbB/metabolismo , Receptores ErbB/genética , Oxigênio/metabolismo , Pupa/crescimento & desenvolvimento , Pupa/metabolismo , Pupa/genética
9.
Proc Natl Acad Sci U S A ; 120(1): e2215214120, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36574695

RESUMO

In Lepidoptera and Diptera, the fat body dissociates into single cells in nondiapause pupae, but it does not dissociate in diapause pupae until diapause termination. Using the cotton bollworm, Helicoverpa armigera, as a model of pupal diapause insects, we illustrated the catalytic mechanism and physiological importance of fat body cell dissociation in regulating pupal development and diapause. In nondiapause pupae, cathepsin L (CatL) activates matrix metalloproteinases (Mmps) that degrade extracellular matrix proteins and cause fat body cell dissociation. Mmp-induced fat body cell dissociation activates lipid metabolism through transcriptional regulation, and the resulting energetic supplies increase brain metabolic activity (i.e., mitochondria respiration and insulin signaling) and thus promote pupal development. In diapause pupae, low activities of CatL and Mmps prevent fat body cell dissociation and lipid metabolism from occurring, maintaining pupal diapause. Importantly, as demonstrated by chemical inhibitor treatments and CRISPR-mediated gene knockouts, Mmp inhibition delayed pupal development and moderately increased the incidence of pupal diapause, while Mmp stimulation promoted pupal development and moderately averted pupal diapause. This study advances our recent understanding of fat body biology and insect diapause regulation.


Assuntos
Diapausa de Inseto , Mariposas , Animais , Pupa/metabolismo , Corpo Adiposo/metabolismo , Metabolismo dos Lipídeos , Mariposas/genética , Metaloproteinases da Matriz/metabolismo
10.
Dev Biol ; 509: 70-84, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38373692

RESUMO

Many insects undergo the process of metamorphosis when larval precursor cells begin to differentiate to create the adult body. The larval precursor cells retain stem cell-like properties and contribute to the regenerative ability of larval appendages. Here we demonstrate that two Broad-complex/Tramtrack/Bric-à-brac Zinc-finger (BTB) domain transcription factors, Chronologically inappropriate morphogenesis (Chinmo) and Abrupt (Ab), act cooperatively to repress metamorphosis in the flour beetle, Tribolium castaneum. Knockdown of chinmo led to precocious development of pupal legs and antennae. We show that although topical application of juvenile hormone (JH) prevents the decrease in chinmo expression in the final instar, chinmo and JH act in distinct pathways. Another gene encoding the BTB domain transcription factor, Ab, was also necessary for the suppression of broad (br) expression in T. castaneum in a chinmo RNAi background, and simultaneous knockdown of ab and chinmo led to the precocious onset of metamorphosis. Furthermore, knockdown of ab led to the loss of regenerative potential of larval legs independently of br. In contrast, chinmo knockdown larvae exhibited pupal leg regeneration when a larval leg was ablated. Taken together, our results show that both ab and chinmo are necessary for the maintenance of the larval tissue identity and, apart from its role in repressing br, ab acts as a crucial regulator of larval leg regeneration. Our findings indicate that BTB domain proteins interact in a complex manner to regulate larval and pupal tissue homeostasis.


Assuntos
Besouros , Metamorfose Biológica , Morfogênese , Fatores de Transcrição , Tribolium , Animais , Besouros/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Hormônios Juvenis , Larva/metabolismo , Metamorfose Biológica/genética , Morfogênese/genética , Pupa/metabolismo , Fatores de Transcrição/metabolismo , Tribolium/genética , Regeneração/genética
11.
Development ; 149(4)2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35072204

RESUMO

Understanding how development is coordinated in multiple tissues and gives rise to fully functional organs or whole organisms necessitates microscopy tools. Over the last decade numerous advances have been made in live-imaging, enabling high resolution imaging of whole organisms at cellular resolution. Yet, these advances mainly rely on mounting the specimen in agarose or aqueous solutions, precluding imaging of organisms whose oxygen uptake depends on ventilation. Here, we implemented a multi-view multi-scale microscopy strategy based on confocal spinning disk microscopy, called Multi-View confocal microScopy (MuViScopy). MuViScopy enables live-imaging of multiple organs with cellular resolution using sample rotation and confocal imaging without the need of sample embedding. We illustrate the capacity of MuViScopy by live-imaging Drosophila melanogaster pupal development throughout metamorphosis, highlighting how internal organs are formed and multiple organ development is coordinated. We foresee that MuViScopy will open the path to better understand developmental processes at the whole organism scale in living systems that require gas exchange by ventilation.


Assuntos
Drosophila melanogaster/anatomia & histologia , Microscopia Confocal/métodos , Animais , Metamorfose Biológica , Pupa/anatomia & histologia , Imagem com Lapso de Tempo
12.
Cell ; 142(5): 773-86, 2010 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-20813263

RESUMO

Planar cell polarity (PCP) proteins form polarized cortical domains that govern polarity of external structures such as hairs and cilia in both vertebrate and invertebrate epithelia. The mechanisms that globally orient planar polarity are not understood, and are investigated here in the Drosophila wing using a combination of experiment and theory. Planar polarity arises during growth and PCP domains are initially oriented toward the well-characterized organizer regions that control growth and patterning. At pupal stages, the wing hinge contracts, subjecting wing-blade epithelial cells to anisotropic tension in the proximal-distal axis. This results in precise patterns of oriented cell elongation, cell rearrangement and cell division that elongate the blade proximo-distally and realign planar polarity with the proximal-distal axis. Mutation of the atypical Cadherin Dachsous perturbs the global polarity pattern by altering epithelial dynamics. This mechanism utilizes the cellular movements that sculpt tissues to align planar polarity with tissue shape.


Assuntos
Polaridade Celular , Drosophila melanogaster/citologia , Drosophila melanogaster/crescimento & desenvolvimento , Animais , Caderinas/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Epitélio/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Pupa/citologia , Asas de Animais/citologia , Asas de Animais/crescimento & desenvolvimento , Asas de Animais/metabolismo
13.
Proc Natl Acad Sci U S A ; 119(49): e2210404119, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36442095

RESUMO

Diapause is a form of dormancy used widely by insects to survive adverse seasons. Previous studies have demonstrated that forkhead box O (FoxO) is activated during pupal diapause initiation in the moth Helicoverpa armigera. However, it is unclear how FoxO induces diapause. Here, we show that knockout of FoxO causes H. armigera diapause-destined pupae to channel into nondiapause, indicating that FoxO is a master regulator that induces insect diapause. FoxO activates the ubiquitin-proteasome system (UPS) by promoting ubiquitin c (Ubc) expression via directly binding to the Ubc promoter. Activated UPS decreases transforming growth factor beta (TGFß) receptor signaling via ubiquitination to block developmental signaling to induce diapause. This study significantly advances the understanding of insect diapause by uncovering the detailed molecular mechanism of FoxO.


Assuntos
Diapausa de Inseto , Diapausa , Animais , Fator de Crescimento Transformador beta , Pupa , Transdução de Sinais , Receptores de Fatores de Crescimento Transformadores beta , Ubiquitina , Complexo de Endopeptidases do Proteassoma
14.
Proc Natl Acad Sci U S A ; 119(15): e2201071119, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35377802

RESUMO

The molecular control of insect metamorphosis from larva to pupa to adult has long been a mystery. The Broad and E93 transcription factors, which can modify chromatin domains, are known to direct the production of the pupa and the adult, respectively. We now show that chinmo, a gene related to broad, is essential for the repression of these metamorphic genes. Chinmo is strongly expressed during the formation and growth of the larva and its removal results in the precocious expression of broad and E93 in the first stage larva, causing a shift from larval to premetamorphic functions. This trinity of Chinmo, Broad, and E93 regulatory factors is mutually inhibitory. The interaction of this network with regulatory hormones likely ensures the orderly progression through insect metamorphosis.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Proteínas do Tecido Nervoso , Animais , Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Larva/genética , Larva/metabolismo , Metamorfose Biológica/genética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/fisiologia , Pupa/genética , Pupa/metabolismo
15.
Proc Natl Acad Sci U S A ; 119(11): e2118871119, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35259020

RESUMO

SignificanceJuvenile hormone (JH), a sesquiterpenoid, regulates many aspects of insect development, including maintenance of the larval stage by preventing metamorphosis. In contrast, ecdysteroids promote metamorphosis by inducing the E93 transcription factor, which triggers apoptosis of larval cells and remodeling of the larval midgut. We discovered that JH suppresses precocious larval midgut-remodeling by inducing an epigenetic modifier, histone deacetylase 3 (HDAC3). JH-induced HDAC3 deacetylates the histone H4 localized at the promoters of proapoptotic genes, resulting in the suppression of these genes. This eventually prevents programmed cell death of midgut cells and midgut-remodeling during larval stages. These studies identified a previously unknown mechanism of JH action in blocking premature remodeling of the midgut during larval feeding stages.


Assuntos
Aedes/fisiologia , Apoptose , Sistema Digestório/metabolismo , Histona Desacetilases/metabolismo , Hormônios Juvenis/metabolismo , Animais , Apoptose/genética , Sistema Digestório/anatomia & histologia , Ecdisona/metabolismo , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Histona Desacetilases/genética , Histonas/metabolismo , Larva , Pupa/metabolismo
16.
BMC Biol ; 22(1): 98, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38679694

RESUMO

BACKGROUND: The ability of animals to regenerate damaged tissue is a complex process that involves various cellular mechanisms. As animals age, they lose their regenerative abilities, making it essential to understand the underlying mechanisms that limit regenerative ability during aging. Drosophila melanogaster wing imaginal discs are epithelial structures that can regenerate after tissue injury. While significant research has focused on investigating regenerative responses during larval stages our comprehension of the regenerative potential of pupal wings and the underlying mechanisms contributing to the decline of regenerative responses remains limited. RESULTS: Here, we explore the temporal dynamics during pupal development of the proliferative response triggered by the induction of cell death, a typical regenerative response. Our results indicate that the apoptosis-induced proliferative response can continue until 34 h after puparium formation (APF), beyond this point cell death alone is not sufficient to induce a regenerative response. Under normal circumstances, cell proliferation ceases around 24 h APF. Interestingly, the failure of reinitiating the cell cycle beyond this time point is not attributed to an incapacity to activate the JNK pathway. Instead, our results suggest that the function of the ecdysone-responsive transcription factor E93 is involved in limiting the apoptosis-induced proliferative response during pupal development. CONCLUSIONS: Our study shows that apoptosis can prolong the proliferative period of cells in the wing during pupal development as late as 34 h APF, at least 10 h longer than during normal development. After this time point, the regenerative response is diminished, a process mediated in part by the ecdysone-responsive transcription factor E93.


Assuntos
Apoptose , Proliferação de Células , Proteínas de Drosophila , Drosophila melanogaster , Pupa , Regeneração , Fatores de Transcrição , Asas de Animais , Animais , Asas de Animais/crescimento & desenvolvimento , Asas de Animais/fisiologia , Drosophila melanogaster/fisiologia , Drosophila melanogaster/crescimento & desenvolvimento , Pupa/crescimento & desenvolvimento , Pupa/fisiologia , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Regeneração/fisiologia
17.
BMC Biol ; 22(1): 111, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38741075

RESUMO

BACKGROUND: Juvenile hormones (JH) play crucial role in regulating development and reproduction in insects. The most common form of JH is JH III, derived from MF through epoxidation by CYP15 enzymes. However, in the higher dipterans, such as the fruitfly, Drosophila melanogaster, a bis-epoxide form of JHB3, accounted most of the JH detected. Moreover, these higher dipterans have lost the CYP15 gene from their genomes. As a result, the identity of the P450 epoxidase in the JH biosynthesis pathway in higher dipterans remains unknown. RESULTS: In this study, we show that Cyp6g2 serves as the major JH epoxidase responsible for the biosynthesis of JHB3 and JH III in D. melanogaster. The Cyp6g2 is predominantly expressed in the corpus allatum (CA), concurring with the expression pattern of jhamt, another well-studied gene that is crucial in the last steps of JH biosynthesis. Mutation in Cyp6g2 leads to severe disruptions in larval-pupal metamorphosis and exhibits reproductive deficiencies, exceeding those seen in jhamt mutants. Notably, Cyp6g2-/-::jhamt2 double mutants all died at the pupal stage but could be rescued through the topical application of JH analogs. JH titer analyses revealed that both Cyp6g2-/- mutant and jhamt2 mutant lacking JHB3 and JH III, while overexpression of Cyp6g2 or jhamt caused a significant increase in JHB3 and JH III titer. CONCLUSIONS: These findings collectively established that Cyp6g2 as the major JH epoxidase in the higher dipterans and laid the groundwork for the further understanding of JH biosynthesis. Moreover, these findings pave the way for developing specific Cyp6g2 inhibitors as insect growth regulators or insecticides.


Assuntos
Sistema Enzimático do Citocromo P-450 , Drosophila melanogaster , Hormônios Juvenis , Animais , Corpora Allata/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Hormônios Juvenis/biossíntese , Hormônios Juvenis/metabolismo , Larva/crescimento & desenvolvimento , Larva/genética , Metamorfose Biológica/genética , Oxirredutases , Pupa/crescimento & desenvolvimento , Pupa/genética , Pupa/metabolismo
18.
Genes Dev ; 31(9): 862-875, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28536147

RESUMO

Specification of tissue identity during development requires precise coordination of gene expression in both space and time. Spatially, master regulatory transcription factors are required to control tissue-specific gene expression programs. However, the mechanisms controlling how tissue-specific gene expression changes over time are less well understood. Here, we show that hormone-induced transcription factors control temporal gene expression by regulating the accessibility of DNA regulatory elements. Using the Drosophila wing, we demonstrate that temporal changes in gene expression are accompanied by genome-wide changes in chromatin accessibility at temporal-specific enhancers. We also uncover a temporal cascade of transcription factors following a pulse of the steroid hormone ecdysone such that different times in wing development can be defined by distinct combinations of hormone-induced transcription factors. Finally, we show that the ecdysone-induced transcription factor E93 controls temporal identity by directly regulating chromatin accessibility across the genome. Notably, we found that E93 controls enhancer activity through three different modalities, including promoting accessibility of late-acting enhancers and decreasing accessibility of early-acting enhancers. Together, this work supports a model in which an extrinsic signal triggers an intrinsic transcription factor cascade that drives development forward in time through regulation of chromatin accessibility.


Assuntos
Cromatina/metabolismo , Drosophila/crescimento & desenvolvimento , Drosophila/metabolismo , Ecdisona/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Asas de Animais/metabolismo , Animais , Cromatina/genética , Drosophila/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Elementos Facilitadores Genéticos/genética , Feminino , Pupa/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Asas de Animais/crescimento & desenvolvimento
19.
J Biol Chem ; 299(3): 102950, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36717080

RESUMO

Previous studies have demonstrated that high physiological levels of reactive oxygen species induce pupal diapause and extend lifespan in the moth Helicoverpa armigera. This has been shown to occur via protein arginine methyltransferase 1 (PRMT1) blockade of Akt-mediated phosphorylation of the transcription factor FoxO, after which activated FoxO promotes the initiation of diapause. However, it is unclear how PRMT1 is activated upstream of FoxO activity. Here, we show that high reactive oxygen species levels in the brains of H. armigera diapause-destined pupae activate the expression of c-Jun N-terminal kinase, which subsequently activates the transcription factor cAMP-response element binding protein. We show that cAMP-response element binding protein then directly binds to the PRMT1 promoter and upregulates its expression to prevent Akt-mediated FoxO phosphorylation and downstream FoxO nuclear localization. This novel finding that c-Jun N-terminal kinase promotes FoxO nuclear localization in a PRMT1-dependent manner to regulate pupal diapause reveals a complex regulatory mechanism in extending the healthspan of H. armigera.


Assuntos
Mariposas , Proteína-Arginina N-Metiltransferases , Animais , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Longevidade , Mariposas/fisiologia , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Pupa , Diapausa
20.
BMC Genomics ; 25(1): 111, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38297211

RESUMO

BACKGROUND: Wohlfahrtia magnifica is an obligatory parasite that causes myiasis in several warm-blooded vertebrates. Adult females deposit the first-stage larvae directly onto wounds or natural body orifices (e.g., genitalia) of the host, from where they quickly colonize the host tissue and feed on it for development. The infestation of W. magnifica can lead to health issues, welfare concerns, and substantial economic losses. To date, little is known about the molecular mechanisms of the W. magnifica-causing myiasis. RESULTS: In this study, we collected parasitic-stage larvae of W. magnifica from wounds of naturally infested Bactrian camels, as well as pupae and adult flies reared in vitro from the wound-collected larvae, for investigating the gene expression profiles of the different developmental stages of W. magnifica, with a particular focus on examining gene families closely related to the parasitism of the wound-collected larvae. As key proteins related to the parasite-host interaction, 2049 excretory/secretory (ES) proteins were identified in W. magnifica through the integration of multiple bioinformatics approaches. Functional analysis indicates that these ES proteins are primarily involved in cuticle development, peptidase activity, immune response, and metabolic processes. The global investigation of gene expression at different developmental stages using pairwise comparisons and weighted correlation network analysis (WGCNA) showed that the upregulated genes during second-stage larvae were related to cuticle development, peptidase activity, and RNA transcription and translation; during third-stage larvae to peptidase inhibitor activity and nutrient reservoir activity; during pupae to cell and tissue morphogenesis and cell and tissue development; and during adult flies to signal perception, many of them involved in light perception, and adult behavior, e.g., feeding, mating, and locomotion. Specifically, the expression level analysis of the likely parasitism-related genes in parasitic wound-collected larvae revealed a significant upregulation of 88 peptidase genes (including 47 serine peptidase genes), 110 cuticle protein genes, and 21 heat shock protein (hsp) genes. Interestingly, the expression of 2 antimicrobial peptide (AMP) genes, including 1 defensin and 1 diptericin, was also upregulated in the parasitic larvae. CONCLUSIONS: We identified ES proteins in W. magnifica and investigated their functional distribution. In addition, gene expression profiles at different developmental stages of W. magnifica were examined. Specifically, we focused on gene families closely related to parasitism of wound-collected larvae. These findings shed light on the molecular mechanisms underlying the life cycle of the myiasis-causing fly, especially during the parasitic larval stages, and provide guidance for the development of control measures against W. magnifica.


Assuntos
Dípteros , Miíase , Parasitos , Sarcofagídeos , Animais , Feminino , Sarcofagídeos/genética , Parasitos/genética , Miíase/genética , Miíase/parasitologia , Dípteros/genética , Larva , Pupa , Perfilação da Expressão Gênica , Peptídeo Hidrolases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA