Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters











Publication year range
1.
Int J Biol Macromol ; 274(Pt 2): 133326, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38925198

ABSTRACT

Tyrosinase is a biological macromolecule closely related to browning of fruit and vegetables, melanin production, and tyrosinase inhibitors are usually used to prevent browning and pigmentation. In this study, longan shell tannins (LSTs) were screened as tyrosinase inhibitors and their structures were proved to be mixtures of procyanidins (condensed tannins) and ellagitannins (hydrolyzed tannins). Enzymatic experiments verified that LSTs were efficient inhibitors, and the IC50 values for monophenolase and bisphenolase were 176.04 ± 10 and 59.94 ± 5 µg mL-1, respectively. Fluorescence detections and molecular docking revealed that the combination of LSTs to tyrosinase was mainly driven by hydrogen bonding, hydrophobic interaction, as well as van der Waals force, which changed the microenvironment of tyrosine and tryptophan residues as well as enzyme conformation. Circular dichroism and molecular dynamics simulation showed that LSTs affected secondary structures of tyrosinase, resulting in structural stretching and conformational modification of the enzyme. In addition, preservation studies demonstrated that LSTs owned the ability to delay the browning of fresh-cut apples by inhibiting phenolic metabolism, strengthening the antioxidant system, and reducing lipid peroxidation. This paper testified that LSTs are exteaordinary tyrosinase inhibitors, and offered a scientific foundation for the application of LSTs in food industry and medicine.


Subject(s)
Enzyme Inhibitors , Malus , Molecular Docking Simulation , Monophenol Monooxygenase , Tannins , Monophenol Monooxygenase/antagonists & inhibitors , Monophenol Monooxygenase/metabolism , Monophenol Monooxygenase/chemistry , Malus/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Tannins/chemistry , Tannins/pharmacology , Molecular Dynamics Simulation , Fruit/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry
2.
J Food Sci ; 89(8): 4986-4996, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38922901

ABSTRACT

In this study, we optimized the composition of the browning inhibitor for apples and established a prediction model for the browning inhibitor concentration in mass-processed fresh-cut apples based on electrical conductivity measurements. The "Fuji" apples that were harvested in Chungju, Korea, were used for this study. Vitamin C mixture (VCM) and trehalose (Tre) were used as browning inhibitors at a 4% ratio. The browning reaction under Δ3 of BI (browning index) for 5 days was defined as the target shelf-life of the apple flesh. The ΔBI of VCM and Tre was lower than that of VCM by 4%. It is revealed that the electrical conductivity of the browning inhibitor was highly correlated with its concentration and the number of soaked apples. Finally, the regression of the conductivity was fitted as Y = -0.0024 (number of soaked apples) + 0.5111 (R2 = 0.9931). In the validation test, the conductivity must be maintained at 0.4373 S/m or higher to maintain the target anti-browning level of Δ3 or less, which corresponded to ∼80% of the initial qualitative level after manufacture. The conductivity measurement of the browning inhibitor is suitable for monitoring and predicting its concentration in the mass processing of fresh-cut apple production due to the convenience of this method. PRACTICAL APPLICATION: The conductivity measurement of browning inhibitors can be applied not only to the mass processing of apple production but also to the anti-browning treatment of other fruits and vegetables, due to the convenience of this method. From these research results, it is expected to derive a formula that can predict the concentration of browning inhibitors through simple experiments for other fruits or vegetables.


Subject(s)
Ascorbic Acid , Food Handling , Fruit , Maillard Reaction , Malus , Malus/chemistry , Fruit/chemistry , Ascorbic Acid/analysis , Ascorbic Acid/pharmacology , Food Handling/methods , Trehalose , Electric Conductivity , Republic of Korea
3.
Foods ; 13(10)2024 May 20.
Article in English | MEDLINE | ID: mdl-38790884

ABSTRACT

Fresh-cut apple preservation is a critical concern in the food industry due to the rapid deterioration of texture, color, and flavor. While our previous study introduced apple essence microencapsulation (AEM) to enhance flavor during storage, its impact on overall storage quality was minimal. Thus, this study explores the application of two preservation techniques, namely, slightly acidic electrolyzed water (SAEW) and chitosan-apple essence microencapsulation (CH-AEM) coating, to enhance the quality of fresh-cut apples. Our findings reveal that SAEW treatment significantly reduces the browning index (from 65.38 to 57.36) and respiratory rate (from 5.10% to 4.30% of CO2), and maintains a desirable aroma profile compared to uncoated treatment during 10 days of storage. Additionally, the CH-AEM coating acts as a protective barrier, further preserving the sensory characteristics of fresh-cut apples. Notably, the SAEW-CH-AEM group exhibits superior performance in firmness (8.14 N), respiratory rate (3.37% of CO2), ion leakage (34.86%), and juice yield (47.52%) after 10 days. Our research highlights the synergistic effect of combining these preservation strategies, providing a promising approach for extending the shelf life of fresh-cut apples while maintaining their visual appeal and aromatic quality. These results offer valuable insights for the fresh-cut produce industry, contributing to improved apple product preservation and consumer satisfaction.

4.
Food Chem ; 447: 139005, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38507948

ABSTRACT

Hydrogen sulfide (H2S) is known to effectively inhibit the browning of fresh-cut apples, but the mechanism at a metabolic level remains unclear. Herein, non-targeted metabolomics was used to analyze metabolic changes in surface and internal tissues of fresh-cut apple after H2S treatment. The results showed that prenol lipids were the most up-accumulated differential metabolites in both surface and inner tissue of fresh-cut apple during browning process, which significantly down-accumulated by H2S treatment. H2S treatment reduced the consumption of amino acid in surface tissue. Regarding inner tissue, H2S activated defense response through accumulation of lysophospholipid signaling and induced the biosynthesis of phenolic compounds. We therefore propose that H2S inhibited the surface browning of fresh-cut apple by reducing the accumulation of prenol lipids, directly delaying amino acid consumption in surface tissue and indirectly regulating defense response in inner tissue, which provides fundamental insights into browning inhibition mechanisms by H2S.


Subject(s)
Hemiterpenes , Hydrogen Sulfide , Malus , Pentanols , Malus/chemistry , Amino Acids/pharmacology , Lipids/pharmacology
5.
J Sci Food Agric ; 104(5): 2888-2896, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38018275

ABSTRACT

BACKGROUND: The effect of bamboo leaf extract (BLE) on controlling the browning of fresh-cut apple stored at 4 °C was investigated. Browning index, H2 O2 content, O2 - production rate, malondialdehyde (MDA) contents, total phenolic content (TPC) and soluble quinone content (SQC), the activities of polyphenol oxidase (PPO), peroxidase (POD), lipoxygenase (LOX), superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX), DPPH (2,2-diphenyl-2-picryl-hydrazyl) and ABTS [2,2-azinobis(3-ethylbenzothiazoline- 6-sulfonic acid)] radical scavenging activities, and the expression of genes related to browning were all investigated. RESULTS: BLE effectively alleviated the surface browning of fresh-cut apple, accompanied by a reduction in SQC, LOX activity, H2 O2 , O2 - production rate and MDA accumulation. Furthermore, BLE treatment enhanced the TPC, enzymatic (SOD, CAT, APX and POD) and non-enzymatic antioxidant activities. Principal component analysis and Pearson correlation analysis found the browning inhibition by BLE is not through the reduction of phenolic substrates and PPO activity. CONCLUSION: BLE controls the browning of fresh-cut apple by increasing the antioxidant capacity to scavenge ROS, which could alleviate oxidative damage and maintain the membrane integrity. © 2023 Society of Chemical Industry.


Subject(s)
Antioxidants , Malus , Antioxidants/analysis , Malus/metabolism , Lipid Metabolism , Peroxidase/metabolism , Peroxidases/metabolism , Superoxide Dismutase/metabolism , Phenols/chemistry , Ascorbate Peroxidases/metabolism , Plant Extracts/pharmacology
6.
Food Sci Technol Int ; : 10820132231206415, 2023 Oct 06.
Article in English | MEDLINE | ID: mdl-37801509

ABSTRACT

The shelf-life of fresh-cut apples is limited because of their high water loss, deterioration rate, and surface browning. In this research, the effects of ultrasonic, ultrasonic + carboxymethyl cellulose (CMC) 1% coatings, ultrasonic + ascorbic acid (AA) 2%, and combination of ultrasonic + AA 2% and CMC 1% on fresh-cut apples were studied. Physicochemical, antioxidant properties, and microbial stability of ready to eat treated fresh-cut apple was investigated during storage at 4 °C for 12 days. Results showed that the treated fresh-cut had less changes of L*, flesh firmness, soluble solid content, and titratable acidity than that of untreated. Vitamin C, total phenol, total flavonoid, antioxidant capacity, and superoxide dismutase activity were greater in treated fresh-cut apple than that of untreated ones. Ultrasonic application mostly declined polyphenol oxidase and peroxidase activity changes. The combined treatment of ultrasonic + AA 2% + CMC 1% had the greatest impact on reducing microbial load among the treatments. These results revealed that the simultaneous application of ultrasonic and AA followed by CMC coating might have the potential to be used in minimally processed industry.

7.
Foods ; 12(6)2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36981067

ABSTRACT

Fresh-cut fruit requires an edible and water-resistant coating to remain fresh. This article investigated the effects of transglutaminase (TGase) and sunflower oil on the water-resistant characteristics, mechanical properties, and microstructure of a whey protein-based film. The whey protein-based emulsion coating's preservation effect on fresh-cut apples was confirmed. According to the findings, sunflower oil (added at 1.5% w/w) could interact with ß-lactoglobulin, α-lactoglobulin dimer, and ß-lactoglobulin dimer to form emulsion droplets that are evenly dispersed throughout the protein film. This effect, combined with the covalent cross-linking of TGase, significantly improves the films' microstructure, mechanical properties, and water resistance. However, too much and unevenly distributed sunflower oil (add 3% w/w) partially prevented the covalent cross-linking of TGase, reducing the elongation at the break of the composite film. In the fresh-cut apple storage experiment, the whey protein-based emulsion coating treatment significantly reduced the weight loss rate and browning index of fresh-cut apples by 26.55% and 46.39%, respectively. This was accomplished by the coating treatment significantly inhibiting the respiration rate increase, PPO and CAT activity enhancement, H2O2 production, and MDA accumulation. This research provides practical, technical, and theoretical guidance for the preservation of fresh-cut fruit.

8.
Food Chem ; 415: 135797, 2023 Jul 30.
Article in English | MEDLINE | ID: mdl-36868069

ABSTRACT

Horticultural products tend to deteriorate during postharvest storage and processing. In this study, cellulose nanofibers (CNFs) were prepared from wood to investigate the effects of CNF treatment on the storage quality, aroma composition, and antioxidant system of fresh-cut apple (Malus domestica) wedges. Compared with control treatment, CNF coating treatment significantly improved the appearance of apple wedges; reduced the decay rate of apple wedges; and delayed the decline in weight loss, firmness, and titratable acid during storage. Gas chromatography-mass spectrometry showed that CNF treatment could maintain the aroma components of apple wedges (stored for 4 days). Further investigations showed that CNF treatment increased the antioxidant system level and decreased reactive oxygen species content and membrane lipid peroxidation level of apple wedges. Overall, this study showed that CNF coating could effectively maintain the quality of fresh-cut apples during cold storage.


Subject(s)
Malus , Malus/chemistry , Antioxidants/analysis , Fruit/chemistry , Food Preservation/methods , Odorants , Cellulose/analysis
9.
Food Chem ; 406: 134663, 2023 Apr 16.
Article in English | MEDLINE | ID: mdl-36459799

ABSTRACT

Surface browning negatively impacts the shelf-life of fresh-cut apple. Herein, we found that the browning of fresh-cut apple aggravated rapidly after 24 h post-cutting, then the transcriptomic and miRNA expression profiles of fresh-cut apple immediately after cutting (T0) and 24 h post-cutting (T24) were analyzed to explore the molecular mechanism of early browning response. A total of 3156 differentially expressed mRNAs (DEGs) and 23 differentially expressed miRNAs (DEmiRNAs) were identified in T24 vs T0. Most DEGs related to respiratory, energy, antioxidant, lipid and secondary metabolism were activated in the early stage of browning. There were 63 target genes of 10 DEmiRNAs validated by degradome sequencing and among them, mdm-miR156aa_L + 1_1 targets 12-oxophytodienoate reductase, ptc-miR6478_R-1 targets patatin-like protein, mdm-miR156aa_L + 1_1 and mdm-miR156aa_L + 1_2 co-target SPLs might participate in the early browning response through regulating antioxidant, lipid and secondary metabolism. Our results will be beneficial for the technological innovation of browning amelioration for fresh-cut apple.


Subject(s)
Malus , MicroRNAs , Malus/metabolism , Transcriptome , MicroRNAs/genetics , MicroRNAs/metabolism , Antioxidants/metabolism , Lipids
10.
Crit Rev Food Sci Nutr ; 63(27): 8737-8751, 2023.
Article in English | MEDLINE | ID: mdl-35416745

ABSTRACT

Fresh-cut apples, which offer consumers health benefits and convenience, have become popular in recent years. One of the main challenges for processing fresh-cut apples is rapid development of cut surface browning, immediately after fruits are cut. Browning, a physiological response that impacts organoleptic properties and deters consumer purchase of fresh-cut fresh produce, is mainly a result of enzymatic reaction of phenolic compounds with oxygen catalyzed by polyphenol oxidase (PPO), a decapper enzyme. Many antibrowning agents have been developed and evaluated to inhibit PPO activities by using reducing agents (antioxidants), chelating agents, acidulants, etc. The present manuscript reviews the diverse characteristics of PPO (such as optimum pH and temperature, and molecular weight) in apples reported in the literature and the enzyme's latency, multiplicity and copper states in the active site. It also summarizes the latest development in the investigation and formulations of antibrowning compounds, and discusses future research needs. This review should stimulate further research to discover more effective, low cost, and natural antibrowning compounds to meet the demand of consumers as well as the food industry for clean label and long shelf-life of fresh-cut apples.


Subject(s)
Malus , Malus/chemistry , Catechol Oxidase , Maillard Reaction , Food Preservation , Fruit/chemistry
11.
Foods ; 13(1)2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38201049

ABSTRACT

This study determined that Zanthoxylum bungeanum leaves (ZBLs) are rich in functional components such as cellulose, protein, flavone, and polyphenols. Therefore, they were used as the main raw material, with sodium alginate as a thickener and glycerol as a plasticizer, to investigate the preparation of active films from ZBL powder through high-pressure homogenization (HPH). The physical, optical, mechanical, and antioxidant properties of the films were evaluated, and their application in preserving fresh-cut apples was examined. The results showed that the optimal concentration of ZBL powder was 1.5% under a 30 MPa HPH treatment. The resulting HPH-treated films exhibited a denser microstructure and improved water vapor barrier properties and mechanical strength. Compared to the films without HPH treatment, the tensile strength increased from 4.61 MPa to 12.13 MPa, the elongation at break increased from 21.25% to 42.86%, the water vapor permeability decreased from 9.9 × 10-9 g/m·s·Pa to 8.0 × 10-9 g/m·s·Pa, and the transparency increased from 25.36% to 38.5%. Compared to the control group, the fresh-cut apples packaged with the HPH-treated ZBL active films exhibited effective preservation of apple quality during a five-day period at 4 °C and 70% humidity, showing better preservation effects than the other groups. In conclusion, the use of HPH treatment in developing novel biopolymer active films from ZBL powders with enhanced properties holds potential for various applications.

12.
Food Chem ; 393: 133421, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-35689923

ABSTRACT

Plasma activated water (PAW) is a new approach to disinfecting surfaces including fresh-cut foods while maintaining their quality attributes. The aim of this study was to evaluate the effect of PAW on enzyme activity, microbial and physicochemical quality of fresh-cut apples. PAW was produced at different production activation times of 10 min, 20 min, 30 min, 45 min and 60 min and the fresh-cut apple slices were washed with PAW for 5 min and stored at 4 °C for 12 days. Results showed that PAW treatments reduced the polyphenol oxidase activity immediately after treatment and the lowest activity was recorded in PAW-20 min (5.10 ± 0.16 U/g FW) after 12 days. Conversely, peroxidase activity of the samples increased immediately after PAW treatment and the samples treated with PAW activated for 30 min had the lowest peroxidase activity at the end of 12 days of storage. No significant changes in the total phenolic content and FRAP antioxidant activity of the fresh-cut apple samples after PAW treatments. The results from firmness, membrane permeability, respiration rate and microstructural imaging showed that at higher PAW activation times (45 min and 60 min) had adverse effects on the quality of fresh-cut apples. Significant reductions in the total aerobic bacteria and total yeast and molds were observed in all PAW treatments except PAW activated for 10 min. The results suggests that plasma activated water could maintain the quality of the fresh-cut apples during storage for plasma activation times of 20 min and 30 min for up to 12 days of storage.


Subject(s)
Malus , Water Purification , Antioxidants/analysis , Fruit/chemistry , Malus/chemistry , Peroxidases , Yeasts
13.
Foods ; 11(7)2022 Mar 28.
Article in English | MEDLINE | ID: mdl-35407072

ABSTRACT

The aim of this work is to glazing a modified bio-polymer shell as substitute of peel to keep the postharvest quality of fresh-cut fruits. In this study, chitosan as backbone of the shell was modified by addition of the functional extracts obtained from Zanthoxylum, in which 12 kinds of main identified bio-active components consisted of over 55% of the total extracts. The introduction of the extracts improved physic and mechanical properties of the shell, and endowed it with significant antimicrobial and antioxidant activity. Accordingly, the modified chitosan was used as the substitute of peel to preserve fresh-cut apples. Results exhibited that such treatments obviously delayed the decline process of overall postharvest quality of the preserved apple samples throughout all the storage period, represented by the variations in physical, chemical, and microbial properties of the apple samples were significantly inhibited. The overall observations revealed promising potential of the bio-polymer shell in food application.

14.
Food Sci Biotechnol ; 29(12): 1655-1663, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33282432

ABSTRACT

Effects of tea polyphenols (TP) incorporation on physicochemical and antioxidative properties of whey protein isolate (WPI) coating were studied. Two WPI coating solutions were prepared by heating WPI solutions (pH 8, 90 °C) for 30 min and then TP was incorporated. TP addition could increase the negative zeta potential of 5% solution. The surface hydrophobicity index of both solutions was increased and intrinsic fluorescence intensity decreased greatly after addition of TP. 2,2-Diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azinobis (2 ethylbenzothiazoline-6-sulfonate) (ABTS) radical scavenging capacities of both solutions increased with increasing TP. Compared with apple pieces coated with whey protein only, those with TP containing whey protein coatings showed lower browning index and slight changes in weight loss during 24 h storage. Data indicated that TP could influence the physicochemical properties and improve the antioxidant activity of WPI coating solutions and can be used to retard the enzymatic browning of fruit during storage.

15.
Foods ; 9(1)2020 Jan 09.
Article in English | MEDLINE | ID: mdl-31936660

ABSTRACT

Optimisation of processing time and pre-treatments are crucial factors prior to apple drying to produce a high-quality product. The purpose of the present study was to test the utility of physical (hot-water, HWB and steam blanching, SB) and chemical (1% ascorbic acid, AA; and 1% citric acid, CA) treatments, alone or in combination in reducing surface discolouration as well as oxidative enzyme activity in apple slices (cv. Golden Delicious and Elstar) exposed to air at room temperature for 0, 30 and 60 min. The total colour change (ΔE) for Golden Delicious was equal to 2.38, 2.68, and 4.05 after 0, 30 and 60 min of air exposure, respectively. Dipping in AA solution (1% w/v) was found to be the best treatment to limit surface discolouration of both apple cultivars. The best heat treatments to inhibit polyphenol oxidase/peroxidase enzymes activity were 70 °C HWB for Golden Delicious and 60 °C HWB for Elstar slices, both in combination with a solution of 1% AA and 1% CA. The tested apple cultivars were found to require different treatments at minimum ambient air exposure to obtain the best surface colour condition.

16.
Molecules ; 24(10)2019 May 25.
Article in English | MEDLINE | ID: mdl-31130642

ABSTRACT

The effect of fish gelatin and chitosan coatings on the physicochemical characteristics of fresh-cut apples (Malus pumila Mill.), stored at 5 °C and 22 °C, was investigated. Chitosan provided an effective control for microbial growth, maintained firmness during 4 days of storage at room temperature (22 °C), and 12 days at refrigerator (5 °C). The results indicated that chitosan coating caused a significant decrease (p < 0.05) in the L* value of cube color of cut apples. Fish gelatin-chitosan coatings mitigated the L* value and decrease in hue angle of the cut apple samples, at cold storage. Experimental results showed that fish gelatin-chitosan and chitosan coatings, can be used to mitigate the formation of vitamin C, due to respiration, microbial growth, and weight loss at cold storage. Fish gelatin-chitosan coating might be a better combination for maintaining appearance and extending shelf-life of cut apples, compared to only chitosan coatings.


Subject(s)
Chitosan/chemistry , Food Preservation/methods , Gelatin/chemistry , Malus , Ascorbic Acid/analysis , Refrigeration
17.
Food Chem ; 274: 415-421, 2019 Feb 15.
Article in English | MEDLINE | ID: mdl-30372959

ABSTRACT

Photodynamic treatment (PDT) is an innovative technology with non-thermal and environmentally sound merits, but the evaluation on the storage qualities of fresh produce was scarce. In this study, the effects of curcumin-based PDT on the quality of fresh-cut 'Fuji' apple slices during storage at 4 °C were investigated. The impacts on the survival of Escherichia coli, color and weight loss were examined under different curcumin concentrations, illumination time or incubation time. Curcumin-based photodynamic inactivation of E. coli on the surface of apple slices reached 0.95 log. Curcumin-based PDT was proven to prevent browning and weight loss. Additionally, PDT significantly reduced the activity of polyphenol oxidase and peroxidases to 48% and 51%, respectively. Moreover, there were few negative changes in total phenolic, ascorbic acid content and anti-oxidant activity of the treated apples. These results indicated that curcumin-based PDT was a viable and promising non-thermal technology to preserve the quality of fresh produce.


Subject(s)
Curcumin/pharmacology , Food Quality , Food Storage , Malus/drug effects , Malus/radiation effects , Color , Escherichia coli/drug effects , Escherichia coli/physiology , Escherichia coli/radiation effects , Malus/enzymology , Malus/microbiology , Photochemotherapy
18.
Ultrason Sonochem ; 48: 509-516, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30080578

ABSTRACT

This study evaluated the simultaneous effect of ultrasound on vacuum impregnation process to enhance infusion of calcium lactate and black carrot phenolics into ready to eat apple tissues. A vacuum - ultrasonic equipment was developed for this purpose and effects of different ultrasound powers (96-198 W) at 35 kHz and stage of ultrasound application at vacuum and restoration periods were investigated. The simultaneous application of 130 W ultrasound during vacuum impregnation did not rupture cellular integrity, but it led to increases in calcium content (13.8%), total phenolics (11.8%), total flavonoids (17.3%), total anthocyanins (24.6%) and antioxidant capacities (23.6%) of apple discs compared to non-ultrasound vacuum impregnation. In addition, total population of psychrophilic and mesophilic microorganisms were enumerated in both black carrot infused and non-infused samples and results showed that ultrasound-assisted vacuum impregnation treatment in the presence of black carrot phenolics were highly effective on inhibition of microorganisms growth in apple discs over storage period.


Subject(s)
Calcium/chemistry , Daucus carota/chemistry , Food Handling , Food Storage , Malus/chemistry , Phenols/chemistry , Ultrasonic Waves , Anthocyanins/analysis , Antioxidants/analysis , Flavonoids/analysis , Hardness , Malus/microbiology , Phenols/analysis , Time Factors , Vacuum
19.
Nanomaterials (Basel) ; 7(8)2017 Jul 31.
Article in English | MEDLINE | ID: mdl-28758980

ABSTRACT

A novel nanopackaging film was synthesized by incorporating ZnO nanoparticles into a poly-lactic acid (PLA) matrix, and its effect on the quality of fresh-cut apple during the period of preservation was investigated at 4 ± 1 °C for 14 days. Six wt % cinnamaldehyde was added into the nano-blend film. Scanning electron microscope (SEM) analysis showed a rougher cross-section of the nano-blend films and an X-ray diffraction (XRD) was carried out to determine the structure of the ZnO nanoparticles. Compared to the pure PLA film, the nano-blend film had a higher water vapor permeability (WVP) and lower oxygen permeability. With the increase of the nanoparticles (NPs) in the PLA, the elongation at break (ε) and elastic modulus (EM) increased, while tensile strength (TS) decreased. Thermogravimetric analysis (TGA) presented a relatively good thermostability. Most importantly, the physical and biochemical properties of the fresh-cut apple were also measured, such as weight loss, firmness, polyphenol oxidase (PPO), total phenolic content, browning index (BI), sensory quality, and microbiological level. The results indicated that nano-blend packaging films had the highest weight loss at the end of storage compared to the pure PLA film; however, nanopackaging provided a better retention of firmness, total phenolic countent, color, and sensory quality. It also had a remarkable inhibition on the growth of microorganisms. Therefore, Nano-ZnO active packaging could be used to improve the shelf-life of fresh-cut produce.

20.
J Agric Food Chem ; 64(42): 8010-8018, 2016 Oct 26.
Article in English | MEDLINE | ID: mdl-27709918

ABSTRACT

Atmospheric double-barrier discharge (DBD) plasma technology is a promising tool in the food industry as an alternative to traditional food preservation methods. However, the effect of the reactive species generated during the treatment on the content of bioactive compounds in food is still little studied, and there are no data concerning potential deleterious effects of DBD-treated foods on human cells. Some functional properties of DBD-treated minimally processed Pink Lady apples were evaluated in comparison with untreated samples through different in vitro and ex vivo tests. Plasma treatment caused only a slight reduction of antioxidant content and antioxidant capacity (up to 10%), mainly limited to the amphiphilic fraction. Noteworthy, treated apple polyphenol extracts did not reduce cell viability and did not suppress the beneficial physiological cell response to oxidative stress in terms of reactive oxygen species production and phase II enzyme activation in human cultured colonocytes.

SELECTION OF CITATIONS
SEARCH DETAIL