Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 99
Filter
1.
Food Chem ; 460(Pt 1): 140471, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39059326

ABSTRACT

Turanose, an isomer of sucrose, naturally exists in honey. Previous study indicated that turanose content increased gradually in acacia honey as honeybees brewed honey in the hive. However, it is unclear how turanose is generated in honey. We hypothesised that turanose was produced by enzymes from honeybees and performed a series of simulation experiments to prove this hypothesis. We found turanose in honey was produced by honeybees processing sucrose. Furthermore, we determined that sugar composition of simulated nectar influenced the turanose concentration in honey: when sucrose concentration was below 5%, turanose was difficult to form, whereas high concentration of fructose and limited glucose were beneficial in producing turanose. Using 13C-labelled sucrose tests combined with proteomics analysis, we identified that α-glucosidase converted sucrose to turanose through an intermolecular isomerisation process. This study reveals the formation mechanism of turanose in honey and assists in the scientific control and improvement of honey quality.

2.
Food Chem ; 459: 140343, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-39018621

ABSTRACT

This study investigated the effects of various binary sweetener mixtures on sweetness enhancement and their interactions with sweet or bitter taste receptors, focusing on sensory perception and receptor activity. Acesulfame K or saccharin was mixed with allulose, aspartame, erythritol, fructose, glucose, or sucrose to match a target sucrose sweetness. The effects of the mixtures on sweet and bitter taste receptors (in the human embryonic kidney -293 cells) and sensory taste intensities were evaluated. Sweetness enhancement at the sweet taste receptor level was observed in some cases, with several monosaccharides reducing the acesulfame K- or saccharin-induced bitter taste receptor activity. Combining acesulfame K or saccharin with any of the six sweeteners perceptually enhanced sweetness (60% âˆ¼ 100% in 50:50 ratio), correlating with a reduction in inherent bitterness (-35% âˆ¼ -63% in 50:50 ratio). This finding suggests that sweetness perception likely increased because the monosaccharides mitigate the activation of bitter receptors caused by high-potency sweeteners.

3.
Pharmacol Res ; 204: 107211, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38744400

ABSTRACT

Several non-caloric sweeteners exhibit a delay in sweetness onset and a sweetness linger after sampling. These temporal properties are thought to be the result of non-specific interactions with cell membranes and proteins in the oral cavity. Data and analysis presented in this report also support the potential involvement of receptor affinity and binding kinetics to this phenomenon. In general, affected sweeteners exhibit distinctly higher binding affinity compared to carbohydrate sweeteners, which do not have temporal issues. In addition, binding kinetic simulations illustrate much slower receptor binding association and dissociation kinetics for a set of non-caloric sweeteners presenting temporal issues, in comparison to carbohydrate sweeteners. So, the higher affinity of some non-caloric sweeteners, dictating lower use levels, and affecting binding kinetics, could contribute to their delay and linger in sweetness perception. Simple pharmacology principles could explain, at least in part, some of the temporal issues of sweeteners.


Subject(s)
Sweetening Agents , Taste Perception , Animals , Humans , Kinetics , Receptors, G-Protein-Coupled/metabolism , Sweetening Agents/metabolism , Sweetening Agents/pharmacology , Taste
4.
Food Chem ; 441: 138258, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38219359

ABSTRACT

The purpose of this study was to compare the influences of gamma-poly glutamic acid (γ-PGA) (1, 2, 3, and 4 %) to see which could outperform conventional cryoprotectant mixture (4 % sorbitol + 4 % sucrose) on cooked crayfish properties, such as physicochemical, textural qualities, oxidation reaction, water distributions, and microstructure integrity, during different freeze-thaw cycles. Crayfish quality characteristics improved significantly as γ-PGA concentration increased compared to control samples.Adding γ-PGA 4 % reduced the carbonyl content from 4.20 to 3.00 nmol/ mg protein during fluctuation-1 (F1), and from 4.15 to 2.80 nmol/ mg protein during fluctuation-2 (F2) compared to control samples. Furthermore, it increased the total sulfhydryl content from 4.15 and 4.76 to 6.19 and 6.47 mol/105 g protein during F1 and F2 and after five freeze-thaw cycles (FTC). This suggests that this concentration was more effective at controlling protein changes than other concentrations. γ-PGA generally enhanced the water-holding capacity by preventing protein denaturation and limiting ice crystal recrystallization. As a result, microstructure stability was evident, texture degradation was avoided, and the crayfish's color was preserved.


Subject(s)
Astacoidea , Polyglutamic Acid/analogs & derivatives , Water , Animals , Temperature , Freezing , Water/chemistry
5.
Food Chem ; 440: 138313, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38159317

ABSTRACT

The physicochemical and foam properties of non-purified water extracts (WE) and purified tea saponins (TS) from Camellia oleifera cake (byproduct) were compared. WE showed different fluid properties at equal saponin concentrations (1.0 wt%) compared to TS. Particularly, it exhibited limited micelle size (average 434.1 nm), effective viscosity (0.15 Pa·s), and surface tension (43.9 mN/m) independently of pH. Moreover, the foam properties of WE were comparable to TS and better than sodium caseinate, especially foam stability. WE foam was more stable than TS foam under pH (3-7) and heating (40-80 °C). In the presence of NaCl, sucrose, and ethanol (5-20 wt%), WE and TS were effective and had similar foam behavior. Low concentrations of sucrose (<10 wt%)/ethanol (<20 wt%) significantly increased the foam capacity, while ethanol over 30 wt% was unfavorable. WE/TS foam contributes significantly to the desired physicochemical and sensory attributes (taste, texture, and appearance) of foods.


Subject(s)
Camellia , Saponins , Camellia/chemistry , Saponins/chemistry , Water , Ethanol , Sucrose
6.
Food Chem X ; 20: 100953, 2023 Dec 30.
Article in English | MEDLINE | ID: mdl-37929267

ABSTRACT

Chinese cherry is an economically important fruit crop native to China. Flavor quality is greatly influenced by compositions of soluble sugars and organic acids. To better understand the flavor quality of Chinese cherry, we determined sugar and acid components in thirty-eight landrace and cultivar collections, and two wild resources using the HPLC method. Glucose and fructose were the main components, accounting for 85.91% of soluble sugars. Malic acid was the predominant organic acid, with an average proportion of 65.73% of total acids. Correlation and PCA analysis revealed seven key indicators for evaluating fruit flavor. Compared with wild Chinese cherry, the cultivated collections exhibited higher levels of soluble sugars, especially fructose, and lower levels of organic acid, particularly malic acid in fruits. Finally, we have established grading criteria for seven flavor indicators in Chinese cherry. Our study provides valuable references for identifying flavor compounds and improving flavor quality of Chinese cherry.

7.
Pharmacol Res ; 198: 107009, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37995896

ABSTRACT

Although hyperhomocysteinemia (hHcys) has been recognized as an important independent risk factor in the progression of end-stage renal disease and the development of cardiovascular complications related to end-stage renal disease, the mechanisms triggering pathogenic actions of hHcys are not fully understood. The present study was mainly designed to investigate the role of HDACs in renal injury induced by hHcys. Firstly, we identified the expression patterns of HDACs and found that, among zinc-dependent HDACs, HDAC9 was preferentially upregulated in the kidney from mice with hHcys. Deficiency or pharmacological inhibition of HDAC9 ameliorated renal injury in mice with hHcys. Moreover, podocyte-specific deletion of HDAC9 significantly attenuated podocyte injury and proteinuria. In vitro, gene silencing of HDAC9 attenuated podocyte injury by inhibiting apoptosis, reducing oxidative stress and maintaining the expressions of podocyte slit diaphragm proteins. Mechanically, we proved for the first time that HDAC9 reduced the acetylation level of H3K9 in the promoter of Klotho, then inhibited gene transcription of Klotho, finally aggravating podocyte injury in hHcys. In conclusion, our results indicated that targeting of HDAC9 might be an attractive therapeutic strategy for the treatment of renal injury induced by hHcys.


Subject(s)
Hyperhomocysteinemia , Kidney Failure, Chronic , Podocytes , Animals , Mice , Epigenetic Repression , Histone Deacetylases/genetics , Histone Deacetylases/metabolism , Hyperhomocysteinemia/genetics , Hyperhomocysteinemia/complications , Hyperhomocysteinemia/metabolism , Kidney Failure, Chronic/complications , Kidney Failure, Chronic/genetics , Kidney Failure, Chronic/metabolism , Podocytes/pathology
8.
Food Chem ; 399: 134005, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36037692

ABSTRACT

Mature honeys that brew naturally in the hive develop distinct bioactive components, and thus carry a higher premium due to their superior quality. However, how to identify mature honeys remains difficult. Trace oligosaccharides are a likely source of biomarkers to indicate maturity. Here, we profiled trace oligosaccharides in acacia honey by GC-MS and used a metabolomics strategy to screen oligosaccharides that distinguish honeys with different maturities. Turanose content increased gradually in acacia honey samples and was closely related to the days stored in the hive (p < 0.05). To accurately quantify turanose, a UPLC-ELSD method was developed. Using the established method, honeys with ≥1.20 g/100 g of turanose could be classified as mature acacia honey. Based on the preliminary study, 500 commercial acacia honeys were analyzed, and only 77.2 % of these samples had a satisfactory level of turanose. This work offers a potential method to evaluate the quality of honeys.


Subject(s)
Acacia , Honey , Gas Chromatography-Mass Spectrometry , Honey/analysis , Metabolomics , Oligosaccharides
9.
Food Chem ; 402: 134221, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36137386

ABSTRACT

Asparagine and sugars are direct precursors of acrylamide; however, proteins and fibres can also influence it. In this study, biscuits prepared replacing wheat flour with increasing concentrations (20, 40, 60%) of lupin or chickpea flour were investigated. Asparagine concentration was equalized in all formulas to isolate the effect of other flour characteristics on the acrylamide formation during baking. The results showed that replacing wheat flour with lupin flour increased acrylamide from 583.9 up to 1443 µg/kg after 9 min of baking, while 20-40% chickpea flour reduced acrylamide to 354.4-312.6 µg/kg. The acrylamide reduction using chickpea was attributed to the lower interaction between precursors resulting from both the coarser particle size and the lower reactivity of carbohydrate in presence of chickpea proteins. Chickpea addition did not affect the colour and texture of biscuits, opening the possibility for large-scale implementation of this mitigation strategy in formulas with a similar initial asparagine content.


Subject(s)
Cicer , Lupinus , Flour , Acrylamide , Asparagine , Triticum , Carbohydrates , Sugars
10.
Food Chem X ; 16: 100471, 2022 Dec 30.
Article in English | MEDLINE | ID: mdl-36263245

ABSTRACT

Lingonberry fruits are considered to play an important role in nutrition, as they comprise a variety of health-promoting components. Because of lingonberries seasonal availability and also due to their rapid degradation, their stability during processing is a continuous challenge for the food industry. Lingonberries are ideal fruits in making jam due to their natural deep reddish color, but recently, increased demand for low-calorie jams with alternative sweeteners has gained special attention. In this line, the objective of this study was to monitor the changes in anthocyanins, vitamin C, total phenolics, total reducing sugars and antioxidant capacity of several lingonberry jams formulated with different sweeteners (sucrose, fructose, erythritol, brown sugar, coconut sugar, stevia, saccharin). Due to the fact that storage conditions are important factors for jam quality, the jams were stored for 180 days at 4 °C and 25 °C (both under light and dark conditions). The rate constants (k) and the half time values (t1/2) of the degradation processes were determined and degradation kinetics was studied. For all analyzed conditions, first-order reaction kinetics was established for the degradation process of anthocyanins, whereas a second-order kinetic model described the degradation of the other compounds. Kinetic parameters showed that the stability of the studied compounds was highly influenced by the type of sweetener used in jam formulation. Total phenolics and antioxidants were best preserved in the presence of stevia, coconut sugar and fructose, whereas a destabilizing effect of erythritol on vitamin C and anthocyanins content during storage was observed. Among all the studied compounds, anthocyanins presented the fastest degradation, regardless storage conditions. The stability of studied compounds was higher at lower storage temperature (4 °C), while increasing the temperature at 25 °C and exposure to light determined higher rate of the degradation processes. The results provide useful information for understanding some bioactive compounds degradation in real foods, contributing to the development of new food products and providing information of commercial importance.

11.
Food Chem ; 374: 131705, 2022 Apr 16.
Article in English | MEDLINE | ID: mdl-34875437

ABSTRACT

Cloud loss of orange juice could be effectively inhibited by centrifugal treatment, but it can induce flavor changes, which become a new challenge for the industry. This work aims to investigate the effect of centrifugation on flavor changes in orange juice and explore its possible mechanism. Taste- and aroma-related attributes were analyzed, and pectin was characterized. Results indicated that pH (4.00), total soluble solid (9.67 °Brix), titratable acidity (0.42%), sucrose (44%), fructose (29%), and glucose (27%) were less affected by centrifugation (P > 0.05). However, aroma compounds significantly changed (P < 0.05), where terpenes and alcohols tended to be distributed in pulp and serum after centrifugation, respectively. Pearson correlation analysis showed that aroma compound distribution induced by centrifugation was highly related to chelator-solubilized pectin fraction and sodium carbonate-solubilized pectin fraction (|R| > 0.9). In general, centrifugation clearly changed aroma of orange juice, which was mainly affected by pectin characteristics.


Subject(s)
Citrus sinensis , Beverages/analysis , Odorants/analysis , Pectins , Taste
12.
Biochem Pharmacol ; 193: 114748, 2021 11.
Article in English | MEDLINE | ID: mdl-34461116

ABSTRACT

Cav1.2 L-type voltage-gated Ca2+ channels play a central role in pancreatic ß-cells by integrating extracellular signals with intracellular signaling events leading to insulin secretion and altered gene transcription. Here, we investigated the intracellular signaling pathway following stimulation of Cav1.2 Ca2+ channels and addressed the function of the transcription factor activator protein-1 (AP-1) in pancreatic ß-cells of transgenic mice. Stimulation of Cav1.2 Ca2+ channels activates AP-1 in insulinoma cells. Pharmacological and genetic experiments identified c-Jun N-terminal protein kinase as a signal transducer connecting Cav1.2 Ca2+ channel activation with gene transcription. Moreover, the basic region-leucine zipper proteins ATF2 and c-Jun or c-Jun-related proteins were involved in stimulus-transcription coupling. We addressed the functions of AP-1 in pancreatic ß-cells analyzing a newly generated transgenic mouse model. These transgenic mice expressed A-Fos, a mutant of c-Fos that attenuates DNA binding of c-Fos dimerization partners. In insulinoma cells, A-Fos completely blocked AP-1 activation following stimulation of Cav1.2 Ca2+ channels. The analysis of transgenic A-Fos-expressing mice revealed that the animals displayed impaired glucose tolerance. Thus, we show here for the first time that AP-1 controls an important function of pancreatic ß-cells in vivo, the regulation of glucose homeostasis.


Subject(s)
Insulin-Secreting Cells/metabolism , Insulinoma/metabolism , Transcription Factor AP-1/metabolism , Activating Transcription Factor 2/genetics , Activating Transcription Factor 2/metabolism , Animals , Benzamides/chemistry , Benzamides/pharmacology , Calcium Channels, L-Type/genetics , Calcium Channels, L-Type/metabolism , Cell Line, Tumor , Gene Expression Regulation/physiology , Glucose Intolerance , MAP Kinase Kinase Kinase 1/genetics , MAP Kinase Kinase Kinase 1/metabolism , Mice , Mice, Transgenic , Pyridines/chemistry , Pyridines/pharmacology , Pyrimidines/chemistry , Pyrimidines/pharmacology , RNA Interference , Rats , Transcription Factor AP-1/genetics
13.
Food Res Int ; 141: 109889, 2021 03.
Article in English | MEDLINE | ID: mdl-33641945

ABSTRACT

The roots and tubers of the Asteraceae family are known as a source of various oligosaccharides, and chicory roots and Jerusalem artichoke have stood out for its commercial viability. However burdock root (Arctium lappa L.), which is adapted to temperate climate, moist, and sandy soil, is still unknown as health food in the western world. This review showed the potential of burdock roots as a source of prebiotic fibers, chlorogenic acids, cinnarine, lignans, and quercetin. The extraction methods of burdock functional compounds are made with water, temperature and time variations only. Biological assays showed antioxidant activity, anti-inflammatory, and hypolipidemic properties, and gastric mucosal defense mechanisms, among others. Therefore, the use of burdock roots as functional food should be encouraged in countries that have imported products derived from other roots of the same family for health benefits.


Subject(s)
Arctium , Helianthus , Fructans , Inulin , Plant Roots
14.
Food Res Int ; 139: 109940, 2021 01.
Article in English | MEDLINE | ID: mdl-33509494

ABSTRACT

In order to know the catalytic activities of the disaccharidases expressed in the mammalian small intestinal brush-border membrane vesicles (BBMV) high concentrated solutions of sucrose, maltose, isomaltulose, trehalose and the mixture sucrose:lactose were incubated with pig small intestine disaccharidases. The hydrolysis and transglycosylation reactions generated new di- and trisaccharides, characterized and quantified by GC-MS and NMR, except for trehalose where only hydrolysis was detected. In general, α-glucosyl-glucoses and α-glucosyl-fructoses were the most abundant structures, whereas no fructosyl-fructoses or fructosyl-glucoses were found. The in-depth structural characterization of the obtained carbohydrates represents a new alternative to understand the potential catalytic activities of pig small intestinal disaccharidases. The hypothesis that the oligosaccharides synthesized by glycoside hydrolases could be also hydrolysed by the same enzymes was confirmed. This information could be extremely useful in the design of new non-digestible or partially digestible oligosaccharides with potential prebiotic properties.


Subject(s)
Glycoside Hydrolases , Intestine, Small , Animals , Hydrolysis , Microvilli , Oligosaccharides , Swine
15.
Food Chem ; 338: 128061, 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-32950870

ABSTRACT

The crystallization of amorphous sucrose in food products can greatly affect the quality of foods. This study investigated the effects of polyphenols on the crystallization of amorphous sucrose lyophiles. Monoglycosylated, polyglycosylated, and aglycones with differing polyphenol backbones were studied, in addition to bulk food ingredients containing a high concentration of polyphenols. Solutions containing sucrose with and without polyphenols (1 and 5%) were lyophilized, stored in RH-controlled desiccators, and analyzed by x-ray diffraction. Moisture sorption studies, Karl Fischer titration, and differential scanning calorimetry were also completed. Polyphenol addition delayed sucrose crystallization by up to 6.4x compared to the control. Structure played the most significant role in efficacy of polyphenols in delaying sucrose crystallization, more than Tg or hygroscopicity. Glycosylated polyphenols were more effective than aglycones, polyphenols with (2,1) glycosidic linkages were more effective than those with (6,1) linkages, and bulk food ingredients were the most effective at delaying sucrose crystallization.


Subject(s)
Polyphenols/chemistry , Sucrose/chemistry , Adsorption , Calorimetry, Differential Scanning , Crystallization , Freeze Drying , Water/chemistry
16.
Food Chem ; 340: 128183, 2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33032151

ABSTRACT

Non-centrifugal cane sugar (NCS) samples obtained by traditional moulding and granulation, and also via a novel spray-drying powdering process without additives, were assessed to characterise their sugar and phenolic profiles, flavonoid content, as well as colour parameters. As expected, sucrose was the predominant sugar (91.9-95.5%), followed by glucose (2.9-4.6%), and fructose (1.6-3.7%). Total phenolic content was between 0.4 and 0.6% and total flavonoid content into the range of 0.2-0.4%. Six phenolic acids were found in all NCS samples: protocatechuic acid (0.36-0.94 µg/100 g), vanillic acid (0.70-1.45 µg/100 g), chlorogenic acid (2.08-3.82 µg/100 g), syringic acid (1.08-2.80 µg/100 g), p-coumaric acid (0.69-1.35 µg/100 g), and ferulic acid (0.50-0.95 µg/100 g). The thermal treatment under high temperatures required in the production of granulated products was related with darker colours and changes in phenol and flavonoid contents. In contrast, spray drying generates clearer products, but with slightly less phenol and flavonoid contents.


Subject(s)
Colorimetry , Food Handling , Sugars/chemistry , Antioxidants/analysis , Coumaric Acids/analysis , Flavonoids/analysis , Hydroxybenzoates/analysis , Phenols/analysis
17.
Food Chem ; 340: 127922, 2021 Mar 15.
Article in English | MEDLINE | ID: mdl-32889211

ABSTRACT

This study aimed to evaluate the fermentation performance of a mixture of Lactobacillus spp. in cloudy apple juices from nine cultivars. The results showed that cultivar influenced most the properties of the fermented cloudy apple juice. The fermented cloudy apple juices made from Changfu had the highest viable bacterial count and acetic acid contents (6.37 × 108 CFU/mL and 2.67 mg/mL, respectively). It also had higher sensory score, second only to Huaniu. The highest total sugar consumption, utilising fructose, glucose, and sucrose (33.07 mg/mL), was seen with Golden Delicious. Qinguan fermented cloudy apple juice had the highest contents of lactic acid (6.74 mg/mL) and total esters (921.36 µg/L); d-limonene also detected in this fermented cloudy apple juice. Of the nine cultivars examined in this study, Changfu, Qinguan, and Golden Delicious were the most suitable for producing fermented cloudy apple juice with better taste, higher viable count and more intense aroma.


Subject(s)
Fermented Foods/microbiology , Fruit and Vegetable Juices/analysis , Fruit and Vegetable Juices/microbiology , Malus , Acetic Acid/analysis , Bacterial Load , Female , Fermentation , Fermented Foods/analysis , Humans , Lactobacillus acidophilus , Limosilactobacillus fermentum , Lactobacillus plantarum , Male , Odorants/analysis , Sugars/analysis , Taste , Volatile Organic Compounds/analysis
18.
Food Chem ; 345: 128662, 2021 May 30.
Article in English | MEDLINE | ID: mdl-33310258

ABSTRACT

The Giant Willow Aphid (Tuberolachnus salignus, GWA) is an invasive pest insect in New Zealand, which excretes honeydew. European honeybees collect this honeydew and make it into a type of honey that crystallizes in the comb, representing a significant loss to apiarists. This crystallization has been ascribed to high concentrations of oligosaccharides, particularly melezitose. In this research, the first carbohydrate profile of GWA honeydew honey, a sample of GWA honeydew honey was found to contain 37.8% total oligosaccharides of which 27.4% was melezitose, and 2.5% gluconic acid (higher than typical honeydew honeys); 41.2% monosaccharides (lower than typical honeydew honeys); and 0.054% salicylic acid (higher than previous estimates). Melezitose extracted from GWA honeydew honey was not significantly hydrolyzed in crude human-stomach and human-small-intestine simulations and may therefore meet the prebiotic criterion of human indigestibility.


Subject(s)
Aphids/metabolism , Functional Food/analysis , Honey/analysis , Prebiotics/analysis , Animals , Humans , New Zealand , Oligosaccharides/analysis , Trisaccharides/analysis
19.
Food Chem ; 343: 128514, 2021 May 01.
Article in English | MEDLINE | ID: mdl-33187741

ABSTRACT

The aim of this study was to investigate the effect of the coffee roasting process on both toxic and some beneficial antioxidant compounds, applying a systematic and broad approach. Arabica and Robusta green coffee beans were roasted in a lab-scale roaster for different times in order to achieve five roasting degrees (from light to dark) and to assess the evolution of acrylamide (AA), trigonelline, nicotinic acid and caffeoylquinic acids contents (determined by HPLC) as well as antioxidant activity (evaluated by Folin-Ciocalteu, FRAP, DPPH, ABTS assays). The results confirmed that the AA levels and antioxidant activity reached a maximum in the first coffee roasting degrees and then decreased prolonging the heating process, both in Arabica and Robusta samples. Nevertheless, the thermal reduction observed was greater for AA compared to antioxidant activity, which was only slightly reduced due to the balance between the degradation and the neoformation of antioxidant compounds.


Subject(s)
Acrylamide/chemistry , Antioxidants/chemistry , Coffea/chemistry , Coffee/chemistry , Acrylamide/analysis , Alkaloids/analysis , Alkaloids/chemistry , Antioxidants/analysis , Chromatography, High Pressure Liquid , Food-Processing Industry/methods , Hot Temperature , Plant Extracts/analysis , Plant Extracts/chemistry , Quinic Acid/analogs & derivatives , Quinic Acid/analysis , Quinic Acid/chemistry
20.
Food Chem ; 342: 128312, 2021 Apr 16.
Article in English | MEDLINE | ID: mdl-33268164

ABSTRACT

The grapevine red blotch disease (GRBD) was first noticed in 2008, impacting grape ripening. In general, GRBD reduces grape and wine quality resulting in significant economic losses. The purpose of the present study was to evaluate the effect of GRBD on agronomical parameters of 'Cabernet Sauvignon' vines at harvest. Using a metabolomics approach, the influence on primary and secondary metabolite profiling in skin + pulp/flesh and seeds were also determined. GRBD influenced °Brix and berry weight, as well as primary and secondary metabolites in both tissues. 1D 1H NMR was effective in quantifying the main primary and secondary metabolites affected by GRBD. RP-HPLC was similarly able to quantify the main phenolics affected. Multivariate analysis showed the influence of the virus on grape metabolites using both tools in two berry tissues. The effectiveness of both tools to describe sample variability was compared and the most affected metabolites in each tissue could be identified.


Subject(s)
Geminiviridae/pathogenicity , Plant Diseases/microbiology , Vitis/metabolism , Vitis/microbiology , Wine , Amino Acids/metabolism , Chromatography, High Pressure Liquid , Color , Phenols/analysis , Proton Magnetic Resonance Spectroscopy
SELECTION OF CITATIONS
SEARCH DETAIL