Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22277367

RESUMO

IntroductionThe impact of COVID-19 vaccination on disease in the community has been limited, as a result of both SARS-CoV-2 Variants of Concern that partially escape vaccine-induced immunity. We sought to characterise symptoms and viral loads over the course of COVID-19 infection in otherwise-healthy vaccinated adults, representative of the general population, to assess whether current self-isolation guidance remains justified. MethodsIn a prospective, observational cohort study, healthy vaccinated UK adults who reported a positive PCR or lateral flow test, self-swabbed on alternate days until day 10. We compared symptoms and viral kinetics between infections caused by VOCs Delta and Omicron (sub-variants BA.1 and BA.2) and investigated applicability of UK NHS isolation guidelines to these newer VOCs. Results373 infection episodes were reported among 349 participants. Across VOCs, symptom duration was similar, however symptom profiles differed significantly among infections caused by Delta, Omicron BA.1 and BA.2. Anosmia was reported in <10% of participants with BA.1 and BA.2, compared to 42% with Delta infection, coryza fatigue and myalgia predominated. Most notably, viral load trajectories and peaks did not differ between Delta, BA.1 and BA.2, irrespective of symptom severity, VOC or vaccination status. ConclusionCOVID-19 isolation guidance should not differ based on symptom severity or febrile illness and must remain under review as new SARS-CoV-2 VOCs emerge and population immunity changes. Our study emphasises the ongoing transmission risk of Omicron sub-variants in vaccinated adults with mild symptoms that may extend beyond current isolation periods. summaryWe provide prospective characterisation of COVID-19 caused by Delta and Omicron BA.1 and BA.2 in healthy, vaccinated adults. A minority of adults report symptoms that would mandate self-isolation, despite having equally high viral shedding across VOCs that persisted beyond ten days.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-488895

RESUMO

Two mutations occurred in SARS-CoV-2 early during the COVID-19 pandemic that have come to define circulating virus lineages1: first a change in the spike protein (D614G) that defines the B.1 lineage and second, a double substitution in the nucleocapsid protein (R203K, G204R) that defines the B.1.1 lineage, which has subsequently given rise to three Variants of Concern: Alpha, Gamma and Omicron. While the latter mutations appear unremarkable at the protein level, there are dramatic implications at the nucleotide level: the GGG[->]AAC substitution generates a new Transcription Regulatory Sequence (TRS) motif, driving SARS-CoV-2 to express a novel subgenomic mRNA (sgmRNA) encoding a truncated C-terminal portion of nucleocapsid (N.iORF3), which is an inhibitor of type I interferon production. We find that N.iORF3 also emerged independently within the Iota variant, and further show that additional TRS motifs have convergently evolved to express novel sgmRNAs; notably upstream of Spike within the nsp16 coding region of ORF1b, which is expressed during human infection. Our findings demonstrate that SARS-CoV-2 is undergoing evolutionary changes at the functional RNA level in addition to the amino acid level, reminiscent of eukaryotic evolution. Greater attention to this aspect in the assessment of emerging strains of SARS-CoV-2 is warranted.

3.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20248608

RESUMO

There is a pressing need to characterise the nature, extent and duration of immune response to SARS-CoV-2 in cancer patients and inform risk-reduction strategies and preserve cancer outcomes. CAPTURE is a prospective, longitudinal cohort study of cancer patients and healthcare workers (HCWs) integrating longitudinal immune profiling and clinical annotation. We evaluated 529 blood samples and 1051 oronasopharyngeal swabs from 144 cancer patients and 73 HCWs and correlated with >200 clinical variables. In patients with solid cancers and HCWs, S1-reactive and neutralising antibodies to SARS-CoV-2 were detectable five months post-infection. SARS-CoV-2-specific T-cell responses were detected, and CD4+ T-cell responses correlated with S1 antibody levels. Patients with haematological malignancies had impaired but partially compensated immune responses. Overall, cancer stage, disease status, and therapies did not correlate with immune responses. These findings have implications for understanding individual risks and potential effectiveness of SARS-CoV-2 vaccination in the cancer population.

4.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20142430

RESUMO

The ongoing pandemic of SARS-CoV-2 calls for rapid and cost-effective methods to accurately identify infected individuals. The vast majority of patient samples is assessed for viral RNA presence by RT-qPCR. Our biomedical research institute, in collaboration between partner hospitals and an accredited clinical diagnostic laboratory, established a diagnostic testing pipeline that has reported on more than 40,000 RT-qPCR results since its commencement at the beginning of April 2020. However, due to ongoing demand and competition for critical resources, alternative testing strategies were sought. In this work, we present a clinically-validated standard operating procedure (SOP) for high-throughput SARS-CoV-2 detection by RT-LAMP in 25 minutes that is robust, reliable, repeatable, sensitive, specific, and inexpensive.

5.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20071373

RESUMO

The emergence of the novel coronavirus SARS-CoV-2 has led to a pandemic infecting more than two million people worldwide in less than four months, posing a major threat to healthcare systems. This is compounded by the shortage of available tests causing numerous healthcare workers to unnecessarily self-isolate. We provide a roadmap instructing how a research institute can be repurposed in the midst of this crisis, in collaboration with partner hospitals and an established diagnostic laboratory, harnessing existing expertise in virus handling, robotics, PCR, and data science to derive a rapid, high throughput diagnostic testing pipeline for detecting SARS-CoV-2 in patients with suspected COVID-19. The pipeline is used to detect SARS-CoV-2 from combined nose-throat swabs and endotracheal secretions/ bronchoalveolar lavage fluid. Notably, it relies on a series of in-house buffers for virus inactivation and the extraction of viral RNA, thereby reducing the dependency on commercial suppliers at times of global shortage. We use a commercial RT-PCR assay, from BGI, and results are reported with a bespoke online web application that integrates with the healthcare digital system. This strategy facilitates the remote reporting of thousands of samples a day with a turnaround time of under 24 hours, universally applicable to laboratories worldwide.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...