Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(20)2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37894701

RESUMO

Controlling flavor perception by analyzing volatile and taste compounds is a key challenge for food industries, as flavor is the result of a complex mix of components. Machine-learning methodologies are already used to predict odor perception, but they are used to a lesser extent to predict aroma perception. The objectives of this work were, for the processed cream cheese models studied, to (1) analyze the impact of the composition and process on the sensory perception and VOC release and (2) predict "fresh cream" aroma perception from the VOC characteristics. Sixteen processed cream cheese models were produced according to a three-factor experimental design: the texturing agent type (κ-carrageenan, agar-agar) and level and the heating time. A R-A-T-A test on 59 consumers was carried out to describe the sensory perception of the cheese models. VOC release from the cheese model boli during swallowing was investigated with an in vitro masticator (Oniris device patent), followed by HS-SPME-GC-(ToF)MS analysis. Regression trees and random forests were used to predict "fresh cream" aroma perception, i.e., one of the main drivers of liking of processed cheeses, from the VOC release during swallowing. Agar-agar cheese models were perceived as having a "milk" odor and favored the release of a greater number of VOCs; κ-carrageenan samples were perceived as having a "granular" and "brittle" texture and a "salty" and "sour" taste and displayed a VOC retention capacity. Heating induced firmer cheese models and promoted Maillard VOCs responsible for "cooked" and "chemical" aroma perceptions. Octa-3,5-dien-2-one and octane-2,3-dione were the two main VOCs that contributed positively to the "fresh cream" aroma perception. Thus, regression trees and random forests are powerful statistical tools to provide a first insight into predicting the aroma of cheese models based on VOC characteristics.


Assuntos
Queijo , Compostos Orgânicos Voláteis , Queijo/análise , Odorantes/análise , Compostos Orgânicos Voláteis/análise , Ágar , Carragenina , Percepção , Paladar
2.
Molecules ; 28(7)2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37049807

RESUMO

ß-cyclodextrin and allyl isothiocyanate inclusion complexes (ß-CD:AITC) have been proposed for developing fresh fruit and vegetable packaging materials. Therefore, the aim of this research was to develop active materials based on poly(lactic acid) (PLA) loaded with ß-CD:AITC and to assess changes in the material properties during the release of AITC to food simulants. PLA films with 0, 5 and 10 wt.% ß-CD:AITC were developed by extrusion. Surface properties were determined from contact angle measurements. Films were immersed in water, aqueous and fatty simulants to assess the absorption capacity and the change in the thermal properties. Moreover, the release of AITC in both simulants was evaluated by UV-spectroscopy and kinetic parameters were determined by data modeling. Results showed that a higher concentration of ß-CD:AITC increased the absorption of aqueous simulant of films, favoring the plasticization of PLA. However, the incorporation of ß-CD:AITC also avoided the swelling of PLA in fatty simulant. These effects and complex relationships between the polymer, inclusion complexes and food simulant explained the non-systematic behavior in the diffusion coefficient. However, the lower partition coefficient and higher percentage of released AITC to the fatty simulant suggested the potential of these materials for high-fat fruit and vegetable active packaging applications.


Assuntos
Frutas , Verduras , Poliésteres , Embalagem de Produtos , Embalagem de Alimentos/métodos
3.
Am J Chin Med ; 50(8): 2085-2102, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36250390

RESUMO

The development of effective drug-loaded dressings has been considered a hot research topic for biomedical therapeutics, including the use of botanical compounds. For wound healing, adequate dressings can provide a good microenvironment for drug release, such as lidocaine. Biological macromolecular materials such as alginate show excellent properties in wound management. This study involves the preparation and evaluation of biocompatible multilayered-structure microspheres composed of chitosan, porous gelatin, and calcium alginate microspheres. The multilayered structure microspheres were named chitosan@ porous gelatin@ calcium alginate microspheres (CPAMs) and the drugs were rapidly released by the volume expansion of the calcium alginate microspheres. The in vitro release curve revealed that the peak release of lidocaine from CPAMs was reached within 18[Formula: see text]min. After 21[Formula: see text]min, the remaining lidocaine was then slowly released, and the active drug release was converted to a passive drug release phase. The initial release effect of lidocaine was much better than that reported in the published studies. Additionally, blood coagulation experiments showed that CPAMs coagulated blood in 60[Formula: see text]s, and the blood liquidity of the CPAMs group was worse than that of the woundplast group. Therefore, the coagulation characteristics of CPAMs were superior to the commonly used woundplast containing lidocaine healing gel. These study outcomes indicated that the CPAMs acted as fast-release dressings for faster pain control and better coagulation properties.


Assuntos
Alginatos , Quitosana , Humanos , Alginatos/química , Microesferas , Lidocaína , Quitosana/química , Gelatina , Bandagens , Dor
4.
Environ Technol ; 42(25): 3963-3973, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32475224

RESUMO

The objective of the study was to verify whether the method of determining the efficiency of sewage sludge disintegration, i.e. the disintegration degree (DD), can also be used to assess agro-waste disintegration. The following types of agro waste were tested: remains of fruits, sugar beet pulp and sugar beet pulp in the form of pellets. It was shown that DD as used for sewage sludge can also be a useful tool in assessing the disintegration efficiency of agro waste, although it requires the following modifications: (a) a methodology of chemical hydrolysis for each type of agro waste in order to determine the total amount of soluble COD (SCOD) that can be released from the sample and (b) possible changes in the SCOD value that may occur in the sample left in ambient conditions for a time period corresponding to the duration of the disintegration process. DD of agro waste determined according to the formula adopted for sewage sludge resulted in a considerable overestimation of the value in comparison to the formula proposed by the authors, i.e. DD determined for an energy density of 35 kJ L-1 was higher by 55.9 ± 21.5%, and for an energy density of 140 kJ L-1 it was higher by as much as 73.8 ± 28.1%. Taking into account the differences in the determined disintegration degree values that result from the methodology of conducting the chemical hydrolysis, it is recommended, in order to assess the efficiency of disintegration of agro waste, to use the efficiency of organic compound release.


Assuntos
Esgotos , Eliminação de Resíduos Líquidos , Hidrólise
5.
Environ Sci Pollut Res Int ; 27(21): 26502-26510, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32367241

RESUMO

Effects of surface modification by carboxyl group on Pb2+ adsorption performances and stability of peanut shell and its extracts (cellulose, lignin, and hemicellulose) were investigated. Stability of the biosorbents was measured by determining organic compound release amount (TOC). Results showed that adsorption capacity of peanut shell and the extract was poor and stability of them was not good enough. Amount of organic compound released from the unmodified sorbents followed the order: cellulose > lignin > peanut shell > hemicellulose. Hemicellulose was the main organic compound release resource for the raw peanut shell. Due to the poor stability of the raw materials, peanut and its extract could not be used directly in the practical waste water treatment. After modification, adsorption capacity of peanut shell, cellulose, lignin, and hemicellulose increased by 4- to 6-folds. Stability of the modified sorbents also increased significantly, and TOC determined for the modified peanut shell, cellulose, and hemicellulose was lower than 4.0 mg L-1 in the optimum pH range from 4.0 to 6.0 even using for 30 days, which was lower than the drinking water standard in China. Modified peanut shell and its extract except for lignin could be used safely in pH ranged from 4.0 to 6.0. Surface modification could improve the adsorption performances and stability of the biosorbents.


Assuntos
Lignina , Metais Pesados , Adsorção , Arachis , Celulose , China , Extratos Vegetais , Polissacarídeos
6.
Food Res Int ; 121: 127-135, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31108733

RESUMO

Inclusion complexes based on ß-cyclodextrin (ß-CD) and antimicrobial compounds, were prepared by co-precipitation method, and characterized by entrapment efficiency (EE), thermal analysis, X-ray diffraction, 1H NMR spectroscopy, and water sorption. In addition, experiments associated to evaluate the effect of relative humidity on the release of active compounds and antifungal tests were performed. The analysis evidenced the encapsulation of active compounds into the ß-CD structure with EE of 91 ±â€¯4.1% and 66 ±â€¯2.1% for ß-CD/cinnamaldehyde and ß-CD/eugenol complexes, respectively. Additionally, high relative humidities favored the release of active compounds from inclusion complexes. On the other hand, inclusion complexes were able to control the growth of B. cinerea, which was evidenced by a reduction of its mycelialradial growth. Finally, specific interactions between the active compounds and ß-CD were evaluated through molecular dynamics simulation techniques. According to the obtained results, these complexes could be applied as additives in the design of antifungal packaging.


Assuntos
Antifúngicos/química , Óleos Voláteis/química , beta-Ciclodextrinas/química , Acroleína/análogos & derivados , Acroleína/química , Acroleína/metabolismo , Acroleína/farmacologia , Antifúngicos/metabolismo , Antifúngicos/farmacologia , Botrytis/efeitos dos fármacos , Composição de Medicamentos , Eugenol/química , Eugenol/metabolismo , Eugenol/farmacologia , Simulação de Acoplamento Molecular , Óleos Voláteis/metabolismo , Óleos Voláteis/farmacologia , beta-Ciclodextrinas/metabolismo
7.
J Mass Spectrom ; 53(1): 65-77, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28981178

RESUMO

With proton transfer reaction-mass spectrometry standard operating conditions, analysis of alcoholic beverages is an analytical challenge. Ethanol reacts with the primary ion H3 O+ leading to its depletion and to formation of ethanol-related ions and clusters, resulting in unstable ionization and in significant fragmentation of analytes. Different methods were proposed but generally resulted in lowering the sensitivity and/or complicating the mass spectra. The aim of the present study was to propose a simple, sensitive, and reliable method with fragmentation as low as possible, linearity within a realistic range of volatile organic compounds concentrations, and applicability to in vivo dynamic aroma release (nosespace) studies of wines. For in vitro analyses, a reference flask containing a hydro-alcoholic solution (10% ethanol) was permanently connected to the PTR-MS inlet in order to establish ethanol chemical ionization conditions. A low electric field strength to number density ratio E/N (80 Td) was used in the drift-tube. A stable reagent ion distribution was obtained with the primary protonated ethanol ion C2 H5 OH2+ accounting for more than 80% of the ionized species. The ethanol dimer (C2 H5 OH)2 H+ accounted for only 10%. Fragmentation of some aroma molecules important for white wine flavor (various esters, linalool, cis-rose oxide, 2-methylpropan-1-ol, 3-methylbutan-1-ol, and 2-phenylethanol) was studied from same ethanol content solutions connected alternatively with the reference solution to the instrument inlet. Linear dynamic range and limit of detection (LOD) were determined for ethyl hexanoate. Fragmentation of the protonated analytes was limited to a few ions of low intensity, or to specific fragment ions with no further fragmentation. Association and/or ligand switching reactions from ethanol clusters were only significant for the primary alcohols. Interpretation of the mass spectra was straightforward with easy detection of diagnostic ions. These results made this ethanol ionization method suitable for direct headspace analyses of model wines and to their nosespace analyses.


Assuntos
Espectrometria de Massas/métodos , Odorantes/análise , Vinho/análise , Etanol/química , Humanos , Limite de Detecção , Prótons , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/química
8.
Food Chem ; 144: 9-17, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24099536

RESUMO

The influence of water vapour conditions on mass transport and barrier properties of chitosan based films and coatings were studied in relation to surface and structural properties. Water contact angles, material swelling, polymer degradation temperature, barrier properties (PO2, PCO2, WVP) and aroma diffusion coefficients were determined. The solvent nature and the presence of carvacrol influenced the surface and structural properties and then the barrier performance of activated chitosan films. Increasing RH from 0% to 100% led to a significant increase in material swelling. The plasticization effect of water was more pronounced at high humid environment, while at low RH the matrix plasticization was induced by carvacrol. The deposit of a thin chitosan layer on polyethylene decreased PO2 and PCO2 both in dry and humid conditions. The carvacrol release from the chitosan matrix was strongly influenced by RH. A temperature increase from 4 to 37°C also had an impact on carvacrol diffusivity but to a lesser extent than RH.


Assuntos
Quitosana/química , Embalagem de Alimentos/instrumentação , Monoterpenos/química , Cimenos , Difusão , Umidade , Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA